Бизнес. Финансы. Недвижимость. Страхование
Поиск по сайту

Расчет аэродинамического нагрева ракеты в отсеке ла. Расчет аэродинамических коэффициентов крылатой ракеты типа Tомагавк. Коэффициент лобового сопротивления при

АЭРОДИНАМИЧЕСКИЙ НАГРЕВ

Нагрев тел, движущихся с большой скоростью в воздухе или др. газе. А. н.- результат того, что налетающие на тело молекулы воздуха тормозятся вблизи тела. Если полёт совершается со сверхзвук. скоростью, торможение происходит прежде всего в ударной волне, возникающей перед телом. Дальнейшее торможение молекул воздуха происходит непосредственно у самой поверхности тела, в т. н. пограничном слое. При торможении потока молекул воздуха энергия их хаотического (теплового) движения возрастает, т. е. темп-pa газа вблизи поверхности движущегося тела повышается. Макс. темп-pa, до к-рой может нагреться газ в окрестности движущегося тела, близка к т. н. темп-ре торможения: Т0= Tн+v2/2cp, где Тн - темп-pa набегающего воздуха, v - скорость полёта тела, ср- уд. теплоёмкость газа при пост. давлении. Так, напр., при полёте сверхзвук. самолёта с утроенной скоростью звука (ок. 1 км/с) темп-pa торможения составляет ок. 400°С, а при входе косм. аппарата в атмосферу Земли с 1-й косм. скоростью (ок. 8 км/с) темп-ра торможения достигает 8000°С. Если в первом случае при достаточно длит. полёте темп-pa обшивки самолёта может быть близка к темп-ре торможения, то во втором случае поверхность косм. аппарата неминуемо начнёт разрушаться из-за неспособности материалов выдерживать столь высокие темп-ры.

Из областей газа с повыш. темп-рой теплота передаётся движущемуся телу, происходит А. н. Существуют две формы А. н.- конвективная и радиационная. Конвективный нагрев - следствие передачи теплоты из внешней, «горячей» части пограничного слоя к поверхности тела посредством мол. теплопроводности и переноса теплоты при перемещении макроскопич. элементов среды. Количественно конвективный тепловой поток qk определяют из соотношения: qk=a(Те-Tw), где Tе- равновесная темп-pa (предельная темп-pa, до к-рой могла бы нагреться поверхность тела, если бы не было отвода энергии), Tw- реальная темп-ра поверхности, а - коэфф. конвективного теплообмена, зависящий от скорости и высоты полёта, формы и размеров тела, а также от др. факторов. Равновесная темп-pa Tе близка к темп-ре торможения. Зависимость коэфф. a от перечисленных параметров определяется режимом течения в пограничном слое (ламинарный или турбулентный). В случае турбулентного течения конвективный нагрев становится интенсивнее. Это связано с тем, что, помимо мол. теплопроводности, существенную роль в переносе энергии начинают играть турбулентные пульсации скорости в пограничном слое.

С увеличением скорости полёта темп-ра воздуха за ударной волной и в пограничном слое возрастает, в результате чего происходит диссоциация и ионизация молекул. Образующиеся при этом атомы, ионы и эл-ны диффундируют в более холодную область - к поверхности тела. Там происходит обратная реакция (рекомбинация), идущая с выделением теплоты. Это даёт дополнит. вклад в конвективный А. н.

При достижении скорости полёта =5000 м/с темп-pa за ударной волной достигает значений, при к-рых газ начинает излучать энергию. Вследствие лучистого переноса энергии из областей с повыш. темп-рой к поверхности тела происходит радиац. нагрев. При этом наибольшую роль играет излучение в видимой и УФ областях спектра. При полёте в атмосфере Земли со скоростями ниже 1-й космической радиац. нагрев мал по сравнению с конвективным. При 2-й косм. скорости (11,2 км/с) их значения становятся близкими, а при скоростях полёта 13-15 км/с и выше, соответствующих возвращению объектов на Землю после полёта к др. планетам, осн. вклад вносит уже радиац. нагрев.

А. н. играет важную роль при возвращении в атмосферу Земли косм. аппаратов. Для борьбы с А. н. летат. аппараты оснащаются спец. системами теплозащиты. Существуют активные и пассивные методы теплозащиты. В активных методах газообразный или жидкий охладитель принудительно подаётся к защищаемой поверхности и берёт на себя осн. часть поступающей к поверхности теплоты. Газообразный охладитель как бы загораживает поверхность от воздействия высокотемпературной внеш. среды, а жидкий охладитель, образующий на поверхности защитную плёнку, поглощает подходящую к поверхности теплоту за счёт нагревания и испарения плёнки, а также последующего нагрева паров. В пассивных методах теплозащиты воздействие теплового потока принимает на себя спец. образом сконструированная внеш. оболочка или спец. покрытие, наносимое на осн. конструкцию. Радиационная теплозащита основана на применении в кач-ве внеш. оболочки материала, сохраняющего при высоких темп-pax достаточную механич. прочность. В этом случае почти весь тепловой поток, подходящий к поверхности такого материала, переизлучается в окружающее пр-во.

Наибольшее распространение в ракетно-косм. технике получила теплозащита с помощью разрушающихся покрытий, когда защищаемая конструкция покрывается слоем спец. материала, часть к-рого под действием теплового потока может разрушаться в результате процессов плавления, испарения, сублимации и хим. реакций. При этом осн. часть подходящей теплоты расходуется на реализацию разл. физ.-хим. превращений. Дополнительный заградит. эффект имеет место за счёт вдува во внеш. среду сравнительно холодных газообразных продуктов разрушения теплозащитного материала. Пример разрушающихся теплозащитных покрытий - стеклопластики и др. пластмассы на органич. и кремнийорганич. связующих. В кач-ве средства защиты летательных аппаратов от А. н. применяются также углерод-углеродные композиц. материалы.

  • - в градостроительстве - нормативный коэффициент ветрового давления или лобового сопротивления поверхности конструкции, здания или сооружения, на который умножают скоростной напор ветра для получения статической...

    Строительный словарь

  • - первое в России научно-исследовательское учреждение для проведения исследований по теоретической и экспериментальной аэродинамике...

    Энциклопедия техники

  • - расчёт движения летательного аппарата как материальной точки в предположении, что выполняется условие равновесия моментов...

    Энциклопедия техники

  • - совокупность мероприятий и методов, реализующих на экспериментальных установках и стендах или в условиях полёта моделирование течений воздуха и взаимодействия течений с исследуемым...

    Энциклопедия техники

  • - область вихревого течения за летящим самолётом или другим летательным аппаратом...

    Энциклопедия техники

  • - повышение темп-ры тела, движущегося с большой скоростью в воздухе или др. газе. А. и.- результат торможения молекул газа вблизи поверхности тела. Так, при входе космич...

    Естествознание. Энциклопедический словарь

  • - Аэродинамические сила и момент...
  • - нагрев тел, движущихся с большой скоростью в воздухе или другом газе. А. н. - результат того, что налетающие на тело молекулы воздуха тормозятся вблизи тела. Если полет совершается со...

    Большая Советская энциклопедия

  • - ...

    Слитно. Раздельно. Через дефис. Словарь-справочник

  • - ...

    Орфографический словарь русского языка

  • - АЭРОДИНА́МИКА, -и, ж. Раздел аэромеханики, изучающий движение воздуха и других газов и взаимодействие газов с обтекаемыми ими телами...

    Толковый словарь Ожегова

  • - АЭРОДИНАМИ́ЧЕСКИЙ, аэродинамическая, аэродинамическое. прил. к аэродинамика...

    Толковый словарь Ушакова

  • - аэродинами́ческий прил. 1. соотн. с сущ. аэродинамика, связанный с ним 2...

    Толковый словарь Ефремовой

  • - ...

    Орфографический словарь-справочник

  • - аэродинам"...

    Русский орфографический словарь

  • - ...

    Формы слова

"АЭРОДИНАМИЧЕСКИЙ НАГРЕВ" в книгах

Высокочастотный нагрев

Из книги Большая Советская Энциклопедия (ВЫ) автора БСЭ

Аэродинамический момент

БСЭ

Аэродинамический нагрев

Из книги Большая Советская Энциклопедия (АЭ) автора БСЭ

Диэлектрический нагрев

Из книги Большая Советская Энциклопедия (ДИ) автора БСЭ

Индукционный нагрев

БСЭ

Инфракрасный нагрев

Из книги Большая Советская Энциклопедия (ИН) автора БСЭ

Нагрев металла

Из книги Большая Советская Энциклопедия (НА) автора БСЭ

След аэродинамический

Из книги Большая Советская Энциклопедия (СЛ) автора БСЭ

7.1.1. РЕЗИСТИВНЫЙ НАГРЕВ

автора Коллектив авторов

7.1.1. РЕЗИСТИВНЫЙ НАГРЕВ Начальный период. Первые эксперименты по нагреву проводников электрическим током относятся к XVIII в. В 1749 г. Б. Франклин (США) при исследовании разряда лейденской банки обнаружил нагрев и расплавление металлических проволочек, а позднее по его

7.1.2. ЭЛЕКТРОДУГОВОЙ НАГРЕВ

Из книги История электротехники автора Коллектив авторов

7.1.2. ЭЛЕКТРОДУГОВОЙ НАГРЕВ Начальный период. В 1878–1880 гг. В. Сименс (Англия) выполнил ряд работ, которые легли в основу создания дуговых печей прямого и косвенного нагрева, в том числе однофазной дуговой печи емкостью 10 кг. Им было предложено использовать магнитное поле для

7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ

Из книги История электротехники автора Коллектив авторов

7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ Начальный период. Индукционный нагрев проводников основан на физическом явлении электромагнитной индукции, открытом М. Фарадеем в 1831 г. Теорию индукционного нагрева начали разрабатывать О. Хэвисайд (Англия, 1884 г.), С. Ферранти, С. Томпсон, Ивинг. Их

7.1.4. ДИЭЛЕКТРИЧЕСКИЙ НАГРЕВ

Из книги История электротехники автора Коллектив авторов

7.7.5. ПЛАЗМЕННЫЙ НАГРЕВ

Из книги История электротехники автора Коллектив авторов

7.7.5. ПЛАЗМЕННЫЙ НАГРЕВ Начальный период. Начало работ по плазменному нагреву относится к 20-м годам XX в. Сам термин «плазма» ввел И. Ленгмюр (США), а понятие «квазинейтральная» - В. Шоттки (Германия). В 1922 г. X. Гердиен и А. Лотц (Германия) провели опыты с плазмой, полученной при

7.1.6. ЭЛЕКТРОННО-ЛУЧЕВОЙ НАГРЕВ

Из книги История электротехники автора Коллектив авторов

7.1.6. ЭЛЕКТРОННО-ЛУЧЕВОЙ НАГРЕВ Начальный период. Техника электронно-лучевого нагрева (плавка и рафинирование металлов, размерная обработка, сварка, термообработка, нанесение покрытий испарением, декоративная обработка поверхности) создана на основе достижений физики,

7.1.7. ЛАЗЕРНЫЙ НАГРЕВ

Из книги История электротехники автора Коллектив авторов

7.1.7. ЛАЗЕРНЫЙ НАГРЕВ Начальный период. Лазер (сокращение английского Light Amplification by Stimulated Emission of Radiation) создан во второй половине XX в. и нашел определенное применение в электротехнологии.Идею процесса вынужденного излучения высказал еще А. Эйнштейн в 1916 г. В 40-х годах В.А.

Если нагрев снарядов и ракет при малых скоростях полета невелик, то на больших скоростях он становится серьезным препятствием на пути развития летательных аппаратов. Эти аппараты нагреваются теплом, излучаемым Солнцем, и теплом, выделяемым при работе двигателей и аппаратуры управления. Кроме того, они нагреваются при движении в воздушной среде.

Нагрев от движения в воздушной среде играет наиболее существенную роль, особенно при возврате баллистических ракет в атмосферу. При движении летательного аппарата в воздушной среде тепло возникает вследствие трения воздуха о поверхность ракеты и главным образом сжатия воздуха впереди летящего тела.

Как известно, советская ракета, запущенная в Тихий океан, развила скорость более 7200 м/сек. Если бы при ее возвращении в атмосферу эта скорость сохранилась и было обеспечено полное торможение воздуха впереди ракеты, то, как показывает элементарный подсчет на основании уравнения сохранения энергии для сжимаемых газов, температура воздуха перед ракетой могла увеличиться почти на 26 000°.

Однако зададим себе ряд вопросов. Во-первых, действительно ли воздух впереди летящей ракеты в результате сжатия нагревается до подсчитанной температуры? Ответ будет отрицательным. Теоретически полное торможение воздуху впереди обтекаемого тела, каким является снаряд или ракета, должно происходить только в одной точке, а именно: перед острием носовой части. На остальной части поверхности происходит только частичное торможение воздуха. Поэтому общий нагрев воздуха вблизи летательного аппарата значительно меньше. Кроме того, по мере нагрева и повышения плотности воздуха впереди ракеты меняются его термодинамические свойства, в частности увеличивается удельная теплоемкость, и нагрев воздуха оказывается меньшим. Наконец молекулы воздуха, нагретого до абсолютной температуры в 2 500 - 3 000°, начинают "раскалываться" на атомы. Атомы превращаются в ионы, т. е. теряют электроны. Эти процессы (диссоциация и ионизация) также берут часть тепла, снижая температуру воздуха.

Во-вторых, все ли тепло, которым обладает воздух, передается снаряду или ракете при их полете? Оказывается, нет. Нагретый воздух отдает много тепла окружающим массам воздуха путем теплопередачи и теплового излучения.

В-третьих, если воздух впереди летящего тела нагрет до определенной температуры, значит ли это, что и ракета нагревается до той же степени? Тоже нет. Обшивка всегда будет иметь температуру ниже, чем воздух около нее.

Летательный аппарат одновременно с получением тепла будет отдавать тепло окружающему воздуху и охлаждаться вследствие лучеиспускания. В целом аппарат нагреется до такой температуры, при которой установится некоторый сложный тепловой баланс.

Чтобы оценить вероятный нагрев снаряда или ракеты в полете, надо прежде всего знать, с какой скоростью и сколько времени она будет лететь через воздушные слои той или иной плотности и температуры. При пробивании атмосферы вверх пребывание баллистической ракеты в относительно плотной атмосфере очень кратковременно и измеряется секундами. Большую скорость она развивает по сути дела уже на выходе из атмосферы, т. е. там, где воздух очень разрежен.

Все эти обстоятельства, вместе взятые, приводят к тому, что интенсивность нагрева ракеты при полете вверх хотя и значительна, но вполне приемлема без принятия особых конструктивных мер.

Значительно большие трудности ожидают ракету (ее головную часть) при обратном возвращении в атмосферу. Помимо больших аэродинамических нагрузок, здесь может возникнуть так называемый "тепловой удар", связанный с быстрым повышением температуры ракеты.

Перечислим коротко некоторые способы борьбы с нагревом летательных аппаратов, приводимые в иностранной литературе * . Во-первых, уменьшение скорости их вынужденного движения в атмосфере (например, при возвращении ракеты) путем применения воздушных тормозов, парашютов, тормозных двигателей и т. д. Во-вторых, применение для постройки обшивки тугоплавких и жаропрочных материалов. В-третьих, использование для оболочки материалов или покрытий, которым свойственна высокая излучательная способность, т. е. способность отводить больше тепла в пространство. В-четвертых, тщательная полировка поверхности, что улучшает ее отражательную способность. В-пятых, теплоизоляция основных узлов конструкций, т. е. уменьшение скорости нагрева путем нанесения на поверхность слоя вещества с малой теплопроводностью или путем создания между внешней и внутренней обшивками слоисто-пористого теплоизолирующего набора.

* ("Эйроплейн" № 2478. )

И все же при очень высоких скоростях развиваются температуры, при которых непригодны ни металлические, ни какие-либо другие материалы без принятия мер по принудительному охлаждению обшивки. Поэтому шестой путь состоит в создании принудительного охлаждения, которое может быть создано различными способами, в зависимости от назначения летательного аппарата.

Головные части ракет иногда покрывают так называемыми обгорающими покрытиями. Снижение температуры в этом случае достигается созданием таких слоев защитной обшивки, которые предназначены расплавляться и обгорать. Тем самым они поглощают тепло, не допуская его до основных элементов конструкции. При расплавлении или испарении слоя обшивки одновременно образуется защитный слой, который уменьшает передачу тепла к остальной части конструкции.

Эффективность летательных аппаратов на современном уровне их развития непосредственно связана с разрешением тепловой проблемы. Вершиной достижений в этой области были полеты по круговой орбите с возвращением на Землю советских космонавтов Ю. А. Гагарина и Г. С. Титова.

Основные данные иностранных управляемых снарядов и ракет *

Название и страна Максимальная дальность полета, км Максимальная высота полета, км Максимальная скорость Стартовый вес Двигатели (тяга) Примерные геометрические размеры, м Тип старта Система наведения Органы управления Заряд боевой головки (тротиловый эквивалент) Другие данные
длина размах максим. диаметр корпуса
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Баллистические ракеты
"Атлас" (США) 10 000 до 1 300 порядка 7 км/сек 115 - 118 т Первая ступень - 2 ЖРД (по 75 т), вторая ступень - ЖРД (27 т) 24 3 Стационарные наземные позиции Комбинированная (инерциальная и радиокомандная) Отклоняемые шарнирно закрепленные камеры ЖРД и 2 верньерных двигателя Ядерный
"Титан" (США) 10 000 до 1 300 порядка 7 км/сек 93 - 99 т Первая ступень - двухкамерный ЖРД (136 т), вторая ступень - ЖРД (36,6 т) 27,6 3 Стационарные подземные позиции Инерциальная Отклоняемые шарнирно зарепленные камеры ЖРД и 4 верньерных двигателя Ядерный (7 мгт) На вооружение не поступала
"Минитмэн" (США) 10 000 до 1 300 порядка 7 км/сек 34 - 36 т Первая, вторая и третья ступени - РДТТ 17 1,5 Стационарные подземные позиции или подвижные ж.-д платформы Инерциальная Дефлекторы в четырех соплах двигателя первой ступени (возможно и в остальных ступенях) Ядерный (1 мгт) На вооружение не поступала
"Тор" (США) 2 775 до 600 порядка 4,5км/сек 50 т Одна ступень - ЖРД (68 т) 19,8 2,4 Инерциальная Отклоняемые камеры сгорания ЖРД и 2 верньерных двигатели (для управления на конечном участке и стабилизации корпуса против вращения) Ядерный (4 мгт) Носовой конус снижается с дозвуковой скоростью, стабилизируется шестью соплами
"Юпитер" (США) 2 775 до 600 порядка 4,5 км/сек 50 т Одна ступень - ЖРД (68 т) 18 2,6 Стационарные наземные установки Инерциальная Отклоняемые камеры сгорания ЖРД. Сопло, питаемое выхлопными газами газогенератора турбонасоса, выполняет функции верньерного двигателя и стабилизирует корпус против вращения Ядерный (1 мгт) Носовой конус стабилизируется четырьмя соплами
"Поларис" (США) 2200 до 5500 порядка 4 км/сек 12,6 т Первая ступень - РДТТ (45 т), вторая ступень - РДТТ (9 т) 8,4 1,37 С подводных лодок в надводном и подводном положении и со стационарных баз Инерциальная система наведения снаряда и система инерциальной навигации подводной лодки Дефлекторы в четырех соплах первой ступени. Во второй ступени возможно такое же устройство или 4 верньерных двигателя Ядерный (1 мгт) В топливо добавлен порошкообразный алюминий
"Блю Стрик" (Англия) 4 500 до 800 порядка 5,2 км/сек 80 т Одна ступень - 2 ЖРД (135 т) 24 3 Стационарные подземные установки Инерциальная Отклонение обоих шарнирно-закрепленных ЖРД и два патрубка отвода газов от турбонасоса Ядерный На вооружение не поступала
"Першинг" (США) 480 до 160 порядка 2 км/сек 16 т Первая и вторая ступени - РДТТ 12 Подвижные установки Инерциальная Ядерный (1 мгт) Ракета предназначена заменить "Редстоун". На вооружение не поступала
Редстоун" США) 320 до 130 порядка 1,7 км/сек 27,7 т Одна ступень - ЖРД (34 т) 19,2 3,6 1,8 Подвижные установки Инерциальная Аэродинамические и газовые рули Ядерный или обычный
"Капрал" (США) 110 до 50 порядка 1 км/ сек 5 т Одна ступень - ЖРД (9 т) 14 2,13 0,76 Подвижные установки Инерциальная и радиокомандная Аэродинамические и газовые рули Ядерный или обычный
"Сержант" (США) 120 до 50 порядка 1 км/сек 5 т Одна ступень - РДТТ (22,7 т) 10,4 1,8 0,7 Подвижные установки Инерциальная Аэродинамические и газовые рули Ядерный или обычный Ракета предназначена заменить "Капрал". На вооружение не поступала
"Онест Джон" (США) 27 до 10 порядка 0,55 км/ сек 2,7 т Одна ступень - РДТТ 8,3 2,77 0,584 Самоходная пусковая установка, перевозимая вертолетом Установка пусковой рамы по азимуту и возвышению. Стабилизация вращением Вращение посредством четырех небольших двигателей и скошенных килей Ядерный или обычный
"Литтл Джон" (США) 16 Сверхзвуковая 0,36 т Одна ступень - РДТТ 4,422 0,584 0,318 Легкая пусковая установка, перевозимая вертолетом Отклоняемые крестообразные поверхности управления Установка пусковой рамы по азимуту и возвышению. Гиростабилизация Ядерный или обычный
"GAM - 87 А" (США) 1600 до 250 - 300 порядка 4 км/сек 9 т Один РДТТ С самолетов типа В-47, В-52 и Б-58А Инерциальная Дефлектор реактивной струи Ядерный (4 мгт) Авиационная баллистическая ракета. На вооружение не поступала
II. Крылатые ракеты
"Снарк" (США) 10 000 от 300 до 15 200 м 990 км/час 28,2 т Два стартовых РДТТ (по 59 т), один маршевый ТРД (5,9 т) 21 12,9 Подвижная пусковая установка Инерциальная с астрономическим корректором гиростабилизированной платформы Дефлекторы струй стартовых двигателей (при разгоне), элевоны (в полете) Ядерный (до 20 мгт)
"Матадор" (США) 800 (ограничена возможностями наведения) 11 000 м 965 км/час 5,44 т (без стартового двигателя) Один стартовый РДТТ (23 т), один маршевый ТРД (2 т) 12,1 8,87 1,37 Подвижная пусковая установка На модификации ТМ-61А - радиокомандная. На ТМ-61С - дополнительная гиперболическая радионавигационная система "Шаникл" Управляемый стабилизатор, отклоняющиеся пластины на верхней поверхности крыла Ядерный или обычный
"Мейс" (США) 1000 от 300 до 12 200 м 1050 км/час 6,36 т (без стартового двигателя) Один стартовый РДТТ (45,4 т), один маршевый ТРД (2,36 т) 13,42 7,09 Подвижная пусковая установка На модификации ТМ-76А - система наведения "Атран", воспроизводящая радиолокационную карту местности, которая сравнивается с имеющейся на борту картой. На ТМ-76В - инерциальная Управляемый стабилизатор, руль Поворота, элероны Ядерный
"Лакросс" (США) 32 (ограничена радиусом действия системы наведения) Околозвуковая 1 т Один РДТТ 5,86 2,7 0,52 Радиокомандная Подвижное крестообразное хвостовое оперение Ядерный или обычный
"Кэссер" (Франция) 90 В зависимости от местности 970 км/сек 1 т Два стартовых РДТТ, один маршевый ПВРД 3,5 3 Самоходная пусковая установка Радиокомандная Элероны, элевоны и крыльевые кили с рулями направления Обычный
III. Зенитные ракеты
"Бомарк" (США) 400 20 М = 2,5** 6,8 т Один стартовый ЖРД или РДТТ (15,9 т), два маршевых ПВРД (10,4 т) 15 5,54 0,88 Стационарные базы ПВО На начальном этапе - по командам системы "Сейдж". На последнем этапе-активное радиолокационное самонаведение Отклонение шарнирно закрепленного стартового двигателя, руль высоты, руль поворотов и элероны Ядерный или обычный Стартует вертикально
"Ника-Аякс" (США) 40 20 М = 2,5 1 040 кг, 500 кг без стартового двигателя Один стартовый РДТТ, один маршевый ЖРД (1,18 т) 10,8; 6,4 без стартового двигателя 1,6 0,305 Стационарные базы ПВО Командная радиолокационная Три боевые головки с осколками
"Ника-Геркулес" (США) 120 30 М = 3,3 4 500 кг, 2 250 кг без стартового двигателя Один стартовый четырехкамерный ЖРД (или РДТТ), один маршевый РДТТ 12,124; 8,159 без стартового двигателя 2,286 0,8 Стационарные базы ПВО Командная радиолокационная Поверхности управления на задних кромках крестообразного крыла Обычный или ядерный
"Ника-Зевс" (США) до 320 М = 5 - 7 9,1 т Один стартовый РДТТ (200 т), один маршевый РДТТ 15; 9 без старт, двигателя Подземные стационарные базы ПВО Командная радиолокационная и самонаведение у цели Ядерный В стадии разработки
"Тартар" (США) 16 М = 2,5 680 кг 4,6 1,04 С надводных судов По лучу радиолокатора и полуактивная система самонаведения на последнем этапе Обычный На вооружение не поступала
"Талос" (США) 100 М = 2,5 3 175 кг, 1 400 кг без стартового двигателя Один стартовый РДТТ, один маршевый ПВРД 9,3; 6,25 (без стартового двигателя) 2,84 0,76 С крейсеров По лучу радиолокатора и полуактивная радиолокационная система самонаведения на последнем этапе (для ракет с обычным ВВ) Обычный или ядерный В случае ядерного заряда самонаведение отсутствует. Ракетами "Талос" вооружен один крейсер "Гальвестон"
"Террьер" (США) 16 М = 2,5 1 300 кг, 500 кг без стартового двигателя Один стартовый РДТТ, один маршевый РДТТ 8,05; 4,5 (без стартового двигателя) 1,17 0,33 С крейсеров, эсминцев и береговых установок По лучу радиолокатора Подвижное крестообразное крыло Обычный
"Хоук" (США) 35 от 30 до 115 00 м М = 2 579 кг Один РДТТ со стартовой и маршевой ступенями тяги 5,11 1,245 0,356 С подвижных установок, транспортируемых самолетами и вертолетами Командная радиолокационная и полуактивная радиолокационная система самонаведения Рули на задних кромках крестообразного крыла Обычный Ракета предназначена для борьбы с низко летящими самолетами
"Бладхаунд" Мк-1 (Англия) Несколько десятков километров М = 2 2 000 кг, 1135 кг без стартовых двигателей Четыре стартовых РДТТ, два маршевых ПВРД 7,7; 6,77 (без стартовых двигателей) 2,869 0,546 Стационарная база ПВО Поворот стартовой установки по азимуту и возвышению и полуактивная система радиолокационного самонаведения Раздельное или одновременное отклонение подвижных крыльев Обычный
"Ред Ай" (США) 3 5 кг 1,14 0,075 Инфракрасное самонаведение Обычный Предназначен для обороны войск на поле боя от низко летящих самолетов
IV. Противотанковые снаряды
"Виджилент" (Англия) 1,6 560 км/час 12 кг Один РДТТ с двумя ступенями тяги 0,9 0,279 0,114 Переносная установка Управление по проводам Поверхности управления на задних кромках крестообразного крыла. Снаряд в полете медленно вращается Бронебойный заряд На вооружение не поступал
"Пай" Р. V. (Англия) 1,6 Один РДТТ с двумя ступенями тяги 1,524 0,71 0,152 С автомобильных установок или с земли Управление по проводам Отклонение реактивной струи Бронебойный заряд На вооружение не поступал
S. S. 10 "Норд" (Франция) 1,6 290 км/час 15 кг Один РДТТ с двумя ступенями тяги 0,86 0,75 0,165 С автомобильных установок, вертолетов и самолетов Управление по проводам Вибрирующие интерцепторы на задних кромках крестообразного крыла Бронебойный заряд (для брони до 400 мм)
S. S. 11 "Норд" {Франция) 3,5 до 700 км/час 29 кг Один РДТТ с двумя ступенями тяги 1,16 0,5 0,165 С земли, автомобилей, вертолетов и самолетов Управление по проводам Вибрирующий дефлектор выхлопной струи второй ступени, создающий асимметрию тяги в желательном направлении. Снаряд в полете медленно вращается Бронебойный заряд (для брони до 510 мм)
"Дэви Крокет" (США) 3,2 Один РДТТ 1,5 0,15 С ручной установки типа "базука" Ядерный (менее 1 кт) На вооружение не поступал
V. Самолеты-снаряды
"Хаунд Дог" (США) порядка 500 км 18 000 м 2125 км/час 4500 кг Один ТРД (3,4 т) 12,8 3,66 Со стратегических бомбардировщиков В-52С и В-52Н Инерциальная Управляющие поверхности в носовой части (схема "утка"), элероны и руль поворота Ядерный (2 мгт)
"Булпап" (США) 8 (зависит от видимости снаряда и цели) 2 250 км/час 260 кг 3,4 1,1 0,3 С палубных или тактических самолетов По радиокомандам с самолета при визуальном наблюдении за снарядом по трассерам Управляющие поверхности в носовой части (схема "утка") Обычный
"Куэйл" (США) 320 Высота равна высоте полета самолета-носителя 966 км/час 500 кг Один ТРД (1,1 т) 4,04 1,68 Со стратегических бомбарди ровщиков В-47 и В-52 По радиокомандам с самолета или с помощью автопилота с предварительной программой Рули поворота и элевоны Нет Снаряд является носителем оборудования для создания помех. На вооружение не поступал
"Блю Стил" (Англия) порядка 600 От малых до 27 км 1 700 км/час (при пикировании М-2 и более) 6 800 кг Один двухкамерный ЖРД (8 т) 11 4,1 С бомбардировщиков типа "Виктор" и "Вулкан" Инерциальная Управляющие поверхности в носовой части, элероны и руль поворота Ядерный На вооружение не поступал
VI. Снаряды воздушного боя
"Игл" (США) 50 - 160 (по другим источникам - 320) М = 3 900 кг Один ЖРД или РДТТ 4,5 0,35 С дозвукового самолета истребителя (типа "Миссайлир") Радиолокационное телеуправление с самолета-носителя или земли. На последнем этапе (с 16 км) - активное радиолокационное самонаведение Ядерный На вооружение не поступал
"Фолкон" (США) 8 М = 2,5 68 кг Один РДТТ 2,17 0,66 0,164 С самолетов-истребителей Модификация GAR-3 -полуактивная радиолокационная система самонаведения. GAR-4- Поверхности управления у задней кромки крестообразного крыла Обычный
"Сайдуиндер" (США) 5 (зависит от метеоусловий) М = 2,5 70 кг Один РДТТ 2,87 0,508 0,122 С самолетов-истребителей Инфракрасная система самонаведения Крестообразные поверхности управления в носовой части (схема "утка") Обычный
"Спэрроу" (США) 8 М = 2,3 172 кг Один ЖРД (заранее снаряжаемый) 3,6 1,0 0,228 С палубных истребителей Полуактивная радиолокационная система самонаведения Крестообразное оперение Обычный
"Файрстрик" (Англия) 6,4 15 000 М = 2 136 кг Один РДТТ 3,182 0,747 0,22 С самолетов-истребителей Инфракрасная система самонаведения Крестообразные поверхности управления В хвостовой части Обычный
"А. А. 20" (Франция) 4 М = 1,7 134 кг, 144 кг (снаряд против наземных целей) Один РДТТ с двумя ступенями тяги 2,6 0,8 0,25 С самолетов-истребителей Радиокомандная система наведения (летчик видит снаряд по трассерам) Вибрирующие дефлекторы реактивной струн,создающие асимметрию тяги Обычный В полете снаряд вращается

* (Приведенные данные заимствованы из иностранной печати (в основном из "Flight" № 2602 и 2643). Незаполненные графы означают отсутствие опубликованных сведений. )

Рассматривается воздушный старт (старт с самолета) РКН массой 103 т. Катапульта должна разогнать ее до скорости, обеспечивающей безударный выход ракеты из самолета. Ракета движется на бугелях по направляющим, и после того как на направляющих останется одна пара бугелей, под действием силы тяжести начинает приобретать угловую скорость, в результате чего может произойти соударение с аппарелью самолета.

Этим определяется ограничение снизу на скорость катапультирования: иобк > 12,5 м/с.

По сравнению с минометным стартом выведение РКН из самолета при помощи катапульты имеет ряд преимуществ: отсутствует силовое (волновое) и тепловое воздействие горячих газов на самолет, ракета может иметь аэродинамические поверхности, уменьшаются габариты стартовой системы, что упрощает ее компоновку в грузовом отсеке, можно выводить ракету в правильной ориентации (головной частью навстречу потоку). Последние преимущества позволяют использовать скорость самолета для сообщения ракете начальной скорости.

Используется схема катапульты с двумя тянущими цилиндрами. Суммарная масса подвижных частей катапульты на основании предварительных расчетов принималась равной 410 кг. Так как время работы данной катапульты значительно больше, чем рассмотренной выше, рассматривается схема с двумя ГГ, работающими последовательно, что позволяет изменять газоприход в большем диапазоне, чем в схеме с одним ГГ. Учитывая большое расстояние между силовыми цилиндрами (2,5 м) и, следовательно, большую длину соединительных трубопроводов, рассматриваются схемы с двумя ГГ, питающими последовательно оба силовых цилиндра, и с двумя парами ГГ, причем каждая пара питает свой цилиндр. Для выравнивания давлений между цилиндрами в этом случае используется соединительная труба диаметром 50 мм. Исходя из прочности ракеты и опорных узлов (элементов, в которые упирается траверса катапульты) расчеты проводились для значений суммарной силы, создаваемых катапультой: Лкат = 140 т и Лкат = 160 т. Отметим, что суммарное усилие, действующее на самолет при старте, меньше этих величин на величину силы трения в бугелях РКН. В данной схеме используется пневматическое тормозное устройство. При проведении расчетов учитывалось, что в момент срабатывания катапульты самолет совершает маневр «горка». При этом угол тангажа составляет 24°, что дополнительно способствует разгону РКН за счет проекции силы тяжести, а кажущееся поперечное ускорение свободного падения в грузовом отсеке 3 м/с2. Используется низкотемпературное баллиститное топливо с температурой горения при постоянном давлении 2200 К. Максимальное давление в ГГ не должно превышать 200-105 Па.

В варианте 1 с максимальной силой 140 т (схема с двумя парами ГГ) после серии предварительных расчетов время работы первой камеры было выбрано равным 0,45 с, а диаметр соплового отверстия 27 мм. Диаметр каналов в шашках 4 мм, начальная площадь поверхности горения первой камеры 0,096 м2, масса заряда 1,37 кг (на каждый ГГ). Диаметр соплового отверстия второй камеры 53 мм, диаметр каналов в шашках 7,7 мм, начальная площадь поверхности горения 0,365 м2, масса заряда 4,95 кг. Диаметр рабочей камеры силового цилиндра 225 мм, диаметр штока 50 мм, путь поршня до начала торможения 5,0 м.

Максимальное ускорение РКН составило 16,6 м/с2, скорость ракеты в момент отделения от траверсы 12,7 м/с (так как длина направляющих при использовании катапульты, как правило, больше, чем ход катапульты, то скорость ракеты при сходе с направляющих отличается от скорости, которую сообщает ракете катапульта). Максимальная температура внутренней стенки силового цилиндра 837 К, штока 558 К.

В приложении 3 приводятся графики, соответствующие этому варианту. Время включения второго ГГ подобрано таким образом, чтобы давление в силовом цилиндре оставалось неизменным. С учетом разброса времени воспламенения второй ГГ в реальных условиях запускается несколько позже расчетного времени, поэтому кривая давления в силовых цилиндрах может иметь небольшой провал. Если второй ГГ запустить раньше, то на кривой появится нежелательный всплеск давления. На рис. П3.1 показаны зависимости давлений в ГГ, рабочих цилиндрах и в камере торможения от перемещения подвижных частей катапульты. Представление давления в виде функции пути позволяет более наглядно оценить эффективность рабочего цикла катапульты, так как работа, совершаемая ею, пропорциональна интегралу от силы (давления) по пути. Как видно из кривых, площадь подынтегральной функции близка к максимально возможной (с учетом ограничения по максимальной силе). Использование двухступенчатого ГГ позволяет получить большую скорость.

Для варианта 2 (катапульты, развивающей усилие 160 т) диаметр силового цилиндра увеличен до 240 мм, диаметр штока до 55 мм. После серии предварительных расчетов время работы первой камеры было выбрано равным 0,45 с, а диаметр соплового отверстия 28 мм. Диаметр каналов в шашках 4 мм, начальная площадь поверхности горения 0,112 м2, масса заряда 1,43 кг (на каждый ГГ). Диаметр соплового отверстия второй камеры 60 мм, диаметр каналов в шашках 7,4 мм, начальная площадь поверхности горения 0,43 м2, масса заряда 5,8 кг. При этом достигнуто максимальное ускорение РКН 18,5 м/с2, скорость ракеты в момент отделения от траверсы 13,4 м/с. Максимальные температуры внутренней стенки силового цилиндра (850 К), штока (572 К) практически не изменились.

Далее рассмотрим схему, в которой оба силовых цилиндра работают от одних и тех же двух последовательно срабатывающих ГГ. Для этого приходится использовать достаточно большой коллектор (трубопровод), соединяющий ГГ с газовыми цилиндрами. В этом и последующем вариантах считаем, что трубопровод выполнен из стали с повышенной теплостойкостью 12МХ, пределом текучести 280 МПа при температуре 293 К и 170 МПа при температуре 873 К, обладающей высоким коэффициентом теплопроводности.

Для варианта 3 с усилием 140 т диаметр соединительного трубопровода примем равным 110 мм при толщине стенки 13 мм. Диаметр силового цилиндра, как и в варианте 1, 220 мм, диаметр штока 50 мм. После серии предварительных расчетов время работы первой камеры было выбрано равным 0,46 с, а диаметр соплового отверстия 40 мм. Диаметр каналов в шашках 16 мм, начальная площадь поверхности горения 0,43 м2, масса заряда 4,01 кг. Диаметр соплового отверстия второй камеры 84 мм, диаметр каналов в шашках 8,0 мм, начальная площадь поверхности горения 0,82 м2, масса заряда 11,0 кг.

Максимальное ускорение РКН составило 16,5 м/с2, скорость ракеты в момент отделения от траверсы 12,65 м/с (на 0,05 м/с меньше, чем в варианте 1). Максимальная температура внутренней стенки силового цилиндра 755 К, штока 518 К (уменьшились на 40-80 К из-за теплопотерь в трубопроводе). Максимальная температура внутренней стенки трубопровода 966 К. Это достаточно высокая, но вполне допустимая температура, учитывая, что толщина зоны, в которой из-за нагрева заметно уменьшается предел прочности материала, составляет всего 3 мм.

Для варианта катапульты, развивающей усилие 160 т (вариант 4), диаметр силового цилиндра принят равным 240 мм, диаметр штока 55 мм, диаметр трубопровода 120 мм. После проведения серии предварительных расчетов время работы первой камеры было выбрано равным 0,46 с, а диаметр соплового отверстия 43 мм. Диаметр каналов в шашках 16 мм, начальная площадь поверхности горения 0,515 м2, масса заряда 4,12 кг. Диаметр соплового отверстия второй камеры 90 мм, диаметр каналов в шашках 7,8 мм, начальная площадь поверхности горения 0,95 м2, масса заряда 12,8 кг. При этом максимальное ускорение РКН 18,4 м/с2, скорость ракеты в момент отделения от траверсы 13,39 м/с. Максимальные температуры внутренней стенки силового цилиндра 767 К, штока 530 К. Максимальная температура внутренней стенки трубопровода 965 К. Уменьшение диаметра трубопровода до 95 мм приводит к росту температуры его стенок до 1075 К, что еще допустимо.

В заключение рассмотрим влияние числа ГГ на надежность катапульты. Один одноступенчатый ГГ обеспечит максимальную надежность при минимальной скорости выброса ракеты. В случае незапуска ГГ аварии не происходит. Повысить скорость выброса можно увеличив скорость горения топлива, показатель в законе горения, давление в конце работы ГГ до 60-80 МПа (давление в силовых цилиндрах и трубопроводе остается неизменным), диаметр трубопровода (начального объема).

Общий двухступенчатый ГГ имеет меньшую надежность, но обеспечивает повышение скорости выброса ракеты. В случае незапуска ГГ второй ступени происходит один из следующих вариантов: выброс ракеты с малой скоростью, исключающий ее дальнейшее использование, задевание ракетой самолета с незначительными последствиями (невозможность полного закрытия аппарели,

невозможность последующего наддува грузового отсека), перекос или удар ракеты по самолету, приводящий к поломкам или пожару и, в конечном случае, к гибели самолета. Повысить надежность для этого случая могут следующие меры, предотвращающие худшее развитие событий дублирование систем запуска ГГ второй ступени, увеличение времени работы ГГ первой ступени (за счет чего скорость выхода ракеты при работе только ГГ первой ступени повысится настолько, что последствия незапуска будут не столь опасными), изменение конструкции самолета, исключающее его аварию при выходе ракеты с меньшей скоростью. Следует отметить, что в рассматриваемых вариантах при срабатывании только первого ГГ скорость выхода ракеты уменьшится на 3-4 м/с.

Ином газе. Аэродинамический нагрев неразрывно связан с аэродинамическим сопротивлением, которое испытывают тела при движении в атмосфере; энергия, затрачиваемая на его преодоление, частично передаётся телу в виде аэродинамического нагрева. При движении тела встречный поток газа тормозится вблизи его поверхности. Если тело движется со сверхзвуковой скоростью, то торможение происходит сначала в ударной волне, возникающей перед телом, затем непосредственно у самой его поверхности, где торможение вызывается силами вязкости, заставляющими молекулы газа «прилипать» к поверхности, образуя так называемый пограничный слой. При торможении потока его кинетическая энергия уменьшается, и соответственно увеличиваются внутренняя энергия газа и его температура. Так, при полёте ЛА со скоростью, втрое превышающей скорость звука (около 1 км/с), температура воздуха у его поверхности составляет около 400 К, при входе в атмосферу Земли с 1-й космической скоростью (около 8 км/с) достигает 8000 К, а со 2-й космической скоростью (11,2 км/с) - около 11 000 К. Из областей газа с повышенной температурой теплота передаётся движущемуся телу, происходит аэродинамический нагрев. Существуют две формы аэродинамического нагрева - конвективный и радиационный.

Конвективный нагрев - следствие передачи теплоты теплопроводностью из внешней, «горячей» части пограничного слоя к поверхности тела; зависит от скорости и высоты полёта, формы и размеров тела, характера течения (ламинарное или турбулентное) в пограничном слое. В случае турбулентного течения конвективный нагрев становится интенсивнее. При дальнейшем увеличении скорости полёта температура воздуха за ударной волной и в пограничном слое возрастает, в результате чего происходят диссоциация и ионизация молекул газа. Образующиеся при этом атомы, ионы и электроны диффундируют в более холодную область потока - к поверхности тела, где происходит обратная реакция (рекомбинация), идущая с выделением теплоты. Это вносит дополнительный вклад в конвективный аэродинамический нагрев.

Радиационный нагрев происходит вследствие переноса лучистой энергии из областей газа с повышенной температурой к поверхности тела. Наибольшую роль играют излучения в видимой и УФ-областях спектра. При скорости полёта порядка 5 км/с температура газа за ударной волной достигает значений, при которых газ начинает излучать. При полёте в атмосфере Земли со скоростями ниже 1-й космической радиационный нагрев мал по сравнению с конвективным; при 2-й космической скорости их значения становятся близкими, а при скоростях 13-15 км/с и выше (соответствующих возвращению космического аппарата на Землю) основная доля аэродинамического нагрева принадлежит радиационнрй составляющей.

Аэродинамический нагрев также играет существенную роль при сверхзвуковом течении газа в каналах, в первую очередь в соплах ракетных двигателей. В пограничном слое на стенках сопла температура газа может быть близкой к температуре в камере сгорания ракетного двигателя (до 4000 К). При этом действуют те же механизмы переноса энергии, что и в пограничном слое на поверхности ЛА, в результате чего и возникает аэродинамический нагрев стенок сопла ракетного двигателя.

С аэродинамическим нагревом связана проблема «теплового барьера», возникающая при создании сверхзвуковых самолётов, ракет-носителей и космических аппаратов. Но если при достаточно длительном сверхзвуковом полёте обшивка самолёта нагревается до температуры, близкой к температуре торможения (порядка 400 К), то поверхность космического аппарата при входе в атмосферу Земли или другой планеты со скоростью более 10-11 км/с неминуемо начнёт разрушаться из-за неспособности обычных материалов выдерживать столь большие температуры (порядка 6000-8000 К). Поэтому для противодействия аэродинамическому нагреву на космических аппаратах применяют тепловую защиту.

Лит.: Основы теории полёта космических аппаратов. М., 1972; Основы теплопередачи в авиационной и ракетно-космической технике. 2-е изд. М., 1992.

АЭРОДИНАМИЧЕСКИЙ НАГРЕВ - нагрев тел, движущихся с большой скоростью в воздухе или др.газе. А. н. неразрывно связан с аэродинамическим сопротивлением , к-рое испытывают тела при полёте в атмосфере. Энергия, затрачиваемая на преодоление сопротивления, частично передаётся телу в виде А. н. Рассмотрение физ. процессов, обусловливающих А. н., удобно провести с точки зрения наблюдателя, находящегося на движущемся теле. В этом случае можно заметить, что набегающий на тело газ тормозится вблизи поверхности тела. Сначала торможение происходит в ударной волне , образующейся перед телом, если полёт происходит со сверхзвуковой скоростью. Дальнейшее торможение газа происходит, как и при дозвуковых скоростях полёта, непосредственно у самой поверхности тела, где оно вызывается силами вязкости, заставляющими молекулы "прилипать" к поверхности с образованием пограничного слоя .

При торможении потока газа его кинетич. энергия уменьшается, что в соответствии с законом сохранения энергии приводит к увеличению внутр. энергии газа и его темп-ры. Макс. теплосодержание (энтальпия )газа при его торможении у поверхности тела близко к энтальпии торможения: , где - энтальпия набегающего потока, а - скорость полёта. Если скорость полёта не слишком высока (1000 м/с), то уд. теплоёмкость при пост. давлении с р может считаться постоянной и соответствующая темп-pa торможения газа может быть определена из выражения


где Т е - равновесная темп-pa (предельная темп-ра, до к-рой могла бы нагреться поверхность тела, если бы не было отвода энергии), - коэф. конвективного теплообмена, индексом отмечаются параметры на поверхности. T е близка к темп-ре торможения и может быть определена из выражения

где r -коэфф. восстановления темп-ры (для ламинарного , для турбулентного- ), T 1 и М 1 - темп-pa и Маха число на внеш. границе пограничного слоя, -отношение уд. теплоёмкостей газа при пост. давлении и объёме, Pr - число Прандтля.

Величина зависит от скорости и высоты полёта, формы и размеров тела, а также от нек-рых др. факторов. Подобия теория позволяет представить законы теплообмена в виде соотношений между основными безразмерными критериями - Нуссельта числом , Рейнольдса числом , Прандтля числом и температурным фактором , учитывающим переменность теплофиз. свойств газа поперек пограничного слоя. Здесь и - и скорость газа, и - коэфф. вязкости и теплопроводности, L - характерный размер тела. Наиб. влияние на конвективный А. н. оказывает число Рейнольдса. В простейшем случае продольного обтекания плоской пластины закон конвективного теплообмена для ламинарного пограничного слоя имеет вид

где и вычисляются при темп-ре а для турбулентного пограничного слоя

На носовой части тела с затуплением сферич. формы ламинарный теплообмен описывается соотношением:

где r e и m е вычисляются при темп-ре T е . Эти ф-лы могут быть обобщены и на случай расчёта теплообмена при безотрывном обтекании тел более сложной формы с произвольным распределением давления. При турбулентном течении в пограничном слое происходит интенсификация конвективного А. н., связанная с тем, что, помимо молекулярной теплопроводности, существ. роль в переносе энергии нагретого газа к поверхности тела начинают играть турбулентные пульсации.

При теоретич. расчёте А. н. аппарата, летящего в плотных слоях атмосферы, течение около тела можно разбить на две области - невязкую и вязкую (пограничный слой). Из расчёта течения невязкого газа во внеш. области определяется распределение давления по поверхности тела. Течение в вязкой области при известном распределении давления вдоль тела может быть найдено путём численного интегрирования ур-ний пограничного слоя или для расчёта А. н. могут быть использованы разл. приближённые методы.

А. н. играет существ. роль и при сверхзвуковом течении газа в каналах, в первую очередь в соплах ракетных двигателей. В пограничном слое на стенках сопла темп-pa газа может быть близкой к темп-ре в камере сгорания ракетного двигателя (до 4000 К). При этом действуют те же механизмы переноса энергии к стенке, что и в пограничном слое на летящем теле, в результате чего и возникает А. н. стенок сопла ракетных двигателей.

Для получения данных по А. н., особенно для тел сложной формы, в т. ч. тел, обтекаемых с образованием отрывных областей, проводят эксперим. исследования на маломасштабных, геометрически подобных моделях в аэродинамических трубах с воспроизведением определяющих безразмерных параметров (чисел M, Re и температурного фактора).

С повышением скорости полёта темп-pa газа за ударной волной и в пограничном слое возрастает, в результате чего происходит диссоциация и молекул набегающего газа. Образующиеся при этом атомы, ионы и электроны диффундируют в более холодную область - к поверхности тела. Там происходит обратная хим. реакция - рекомбинация, идущая с выделением тепла. Это даёт дополнит. вклад в конвективный А. н. В случае диссоциации и ионизации удобно перейти от темп-р к энтальпиям:


где -равновесная энтальпия, и - энтальпия и скорость газа на внеш. границе пограничного слоя, а - энтальпия набегающего газа при темп-ре поверхности. В этом случае для определения могут быть использованы те же критич. соотношения, что и при относительно невысоких скоростях полёта.

При полёте на больших высотах на конвективный нагрев может оказать влияние неравновесность физико-хим. превращений. Это явление становится существенным, когда характерные времена диссоциации, ионизации и др. хим. реакций становятся равными (по порядку величины) времени пребывания частиц газа в области с повышенной темп-рой вблизи тела. Влияние физико-хим. неравновесности на А. н. проявляется в том, что продукты диссоциации и ионизации, образовавшиеся за ударной волной и в высокотемпературной части пограничного слоя, не успевают рекомбинировать в пристеночной, относительно холодной части пограничного слоя, теплота реакции рекомбинации не выделяется и А. н. уменьшается. В этом случае важную роль приобретают каталитич. свойства материала поверхности тела. Применяя материалы или покрытия с низкой каталитич. активностью по отношению к реакциям рекомбинации (напр., двуокись кремния), можно заметно снизить величину конвективного А. н.

Если через проницаемую поверхность тела происходит подача ("вдув") газообразного охладителя внутрь пограничного слоя, то интенсивность конвективного А. н. снижается. Это происходит гл. обр. в результате дополнит. затрат тепла на нагрев вдуваемых в пограничный слой газов. Эффект снижения конвективного теплового потока при вдуве инородных газов тем сильнее, чем меньше их молекулярный вес, поскольку при этом возрастает уд. теплоёмкость вдуваемого газа. При ламинарном режиме течения в пограничном слое эффект вдува проявляется сильнее, чем при турбулентном. При умеренных уд. расходах вдуваемого газа снижение конвективного теплового потока можно определить по формуле

где - конвективный тепловой поток к эквивалентной непроницаемой поверхности, G - уд. массовый расход вдуваемого газа через поверхность, а - коэф. вдува, зависящий от режима течения в пограничном слое, а также свойств набегающего и вдуваемого газов. Радиационный нагрев происходит вследствие переноса лучистой энергии из областей с повышенной темп-рой к поверхности тела. При этом наибольшую роль играет в УФ- и видимой областях спектра. Для теоретич. расчёта радиац. нагрева необходимо решать систему интегродифференциальных ур-ний радиац. газовой , учитывающих собств. излучение газа, поглощение излучения средой и перенос лучистой энергии по всем направлениям в окружающей тело высокотемпературной области течения. Интегральный по спектру радиац. поток q Р0 к поверхности тела может быть рассчитан с помощью Стефана-Болъцмана закона излучения:

где T 2 - темп-pa газа между ударной волной и телом, = 5,67*10 -8 Вт/(м 2 *К 4) - постоянная Стефана, - эфф. степень черноты излучающего объёма газа, к-рый в первом приближении может рассматриваться как плоский изотермич. слой. Величина е определяется совокупностью элементарных процессов, вызывающих излучение газов при высоких темп-pax. Она зависит от скорости и высоты полёта, а также от расстояния между ударной волной и телом.

Если относит. величина радиац. А. н. велика, то существ. роль начинает играть радиац. охлаждение газа за ударной волной, связанное с выносом энергии из излучающего объёма в окружающую среду и понижением его темп-ры. В этом случае при расчёте радиац. А. н. должна быть введена поправка, величина к-рой определяется параметром высвечивания:


где - скорость полёта, - плотность атмосферы. При полёте в атмосфере Земли со скоростями ниже первой космической радиац. А. н. мал по сравнению с конвективным. При второй космич. скорости они сравниваются по порядку величины, а при скоростях полёта 13-15 км/с, соответствующих возвращению на Землю после полёта к др. планетам, осн. вклад даёт радиационный А. н.

Частный случай А. н.- нагрев тел, движущихся в верх. слоях атмосферы, где режим обтекания является свободномолекулярным, т. е. молекул газа соизмерима или даже превышает размеры тела. В этом случае образования ударной волны не происходит и при больших скоростях полёта (порядка первой космической) для расчёта А. н. может быть использована простая ф-ла

где - угол между нормалью к поверхности тела и вектором скорости набегающего потока, а - коэф. аккомодации, к-рый зависит от свойств набегающего газа и материала поверхности и, как правило, близок к единице.

С А. н. связана проблема "теплового барьера", возникающая при создании сверхзвуковых самолётов и ракет-носителей. Важную роль А. н. играет при возвращении космич. аппаратов в атмосферу Земли, а также при входе в атмосферу планет со скоростями порядка второй космической и выше. Для борьбы с А. н. применяются спец. системы теплозащиты .

Лит.: Радиационные свойства газов при высоких температурах, M., 1971; Основы теории полета космических аппаратов, M., 1972; Основы теплопередачи в авиационной и ракетно-космической технике, M., 1975. И. А. Анфимов .