Бизнес. Финансы. Недвижимость. Страхование
Поиск по сайту

Какие руды используются в производстве сплавов железа. Эксперименты по выплавке железа из болотной руды. Месторождения железной руды

Железные руды - природные минеральные образования, содержащие железо и его соединения в таком объёме, когда промышленное извлечение железа из этих образований целесообразно. Несмотря на то, что железо входит в большем или меньшем количестве в состав всех горных пород, под названием железных руд понимают только такие скопления железистых соединений, из которых с выгодой в экономическом отношении можно получить металлическое железо.

Железные руды представляют собой особые минеральные образования, в состав которых входит железо и его соединения. Данный тип руды считается железной, если доля этого элемента содержаться в таком объеме, чтобы в ее промышленное извлечение было экономически выгодным.

В черной металлургии используются три основных вида железорудной продукции:

— сепарированная железная руда (низкое содержание железа);

— аглоруда (среднее содержание железа);

— окатыши (сырая железосодержащая массы)

Залежи железной руды считаются богатыми, если доля железа в них составляет более 57%. Бедные железные руды могут содержать минимум 26% железа. Ученные выделяют два основных морфологических типа железной руды; линейные и плоскоподобные.

Линейные залежи железной руды представляют собой клиновидные рудные тела в зонах земных разломов, изгибов в процессе метаморфоза. Данный тип железных руд отличается особо высоким содержанием железа (54-69%) с низким содержанием серы и фосфора.

Плоскоподобные залежи можно найти на вершинах пластов железистых кварцитов. Они относятся к типовым корам выветривания.

Богатые железные руды, в основном, отправляют на выплавку в мартеновское и конверторное производство или же на прямое восстановление железа.

Основные промышленные типы месторождений железной руды:

  • — пластовые осадочные месторождения;
  • — комплексные титаномагнетитовые месторождения;
  • — месторождения железистых кварцитов и богатых руд;
  • — скарновые железорудные месторождения;

Второстепенные промышленные типы месторождений железной руды:

  • — железорудные сидеритовые месторождения;
  • — железорудные пластообразные латеритные месторождения;
  • — комплексные карбопатитовые апатит-магнетитовые месторождения;

Мировые запасы разведанных месторождений железной руды составляют 160 миллиардов тонн, в них содержится около 80 миллиардов тонн чистого железа. Крупнейшие месторождения железной руды найдены в Украине, а крупнейшие запасы чистого железа расположены на территории России и Бразилии.

Объем мировой добычи железной руды с каждым годом растет. В 2010 году было добыто более 2,4 млрд тонн железной руды, при этом, Китай, Австралия и Бразилия обеспечили две трети добычи. Если прибавить к ним Россию и Индию, то их суммарная доля на рынке составит более 80%.

Как добывают руду

Рассмотрим несколько основных вариантов добычи железной руды. В каждом конкретном случае выбор в пользу той или иной технологии делается с учетом расположения полезных ископаемых, экономической целесообразности использования того или иного оборудования и т.п.

В большинстве случаев, добыча руды происходит карьерным способом. То есть для организации добычи, сначала вырывается глубокий карьер приблизительно 200-300 метров в глубину. После этого прямо из его дна на больших машинах вывозится железная руда. Которая сразу же после добычи на тепловозах переправляется на различные комбинаты, где из нее изготавливается сталь. На сегодняшний день многие крупные предприятия производят добычу руды, в том случае если у них есть все необходимо оборудование для проведения таких работ.

Рыть карьер следует с использованием больших экскаваторов, однако следует учесть то, что данный процесс может отнять у вас достаточно много лет. После того как экскаваторы дороют до самого первого пласта железной руды, необходимо сдать ее на анализ экспертам, чтобы они смогли определить какой именно процент железа в ней содержится. Если этот процент будет не менее 57, то в таком случае будет экономически выгодным решение о добычи руды в этой местности. Такую руда можно смело перевозить на комбинаты, ведь после переработки из нее обязательно получится сталь высокого качества.

Однако это еще не все, следует очень тщательно проверять сталь, которая появляется в результате переработки железной руды. Если качество добываемой руды не будет соответствовать европейским стандартам, то следует понять, как улучшить качество производства.

Недостаток открытого метода состоит в том, что он позволяет добывать железную руду только на сравнительно небольшой глубине. Поскольку нередко она лежит гораздо глубже – на расстоянии в 600-900 м от поверхности земли – приходится строить шахты. Сначала делают ствол шахты, который напоминает очень глубокий колодец с надежно укрепленными стенками. От ствола в разные стороны отходят коридоры, которые называются штреками. Найденную в них железную руду взрывают, а затем ее куски с помощью специального оборудования поднимают на поверхность. Этот способ добычи железной руды эффективен, но в то же время связан с серьезной опасностью и затратен.

Есть и еще один способ, позволяющий добывать железную руду. Он называется СГД или скважинная гидродобыча. Руду извлекают из-под земли следующим образом: бурят глубокую скважину, опускают туда трубы с гидромонитором и с помощью очень сильной водной струи дробят породу, а затем поднимают ее на поверхность. Этот способ безопасен, однако, к сожалению, он пока неэффективен. Благодаря этому методу удается добыть только около 3% железной руды, в то время как с помощью шахт добывается примерно 70%. Тем не менее, разработкой метода скважинной гидродобычи занимаются специалисты, а потому есть надежда, что в будущем именно этот вариант станет основным, вытеснив карьеры и шахты.

Технология получения железа в древности

Для получения железа из руды, сначала нужно получить крицу. Для этого сначала использовалась окисленная железная руда, которая чаще всего залегает у поверхности. После открытия ее свойств такие залежи быстро истощились в результате их интенсивной разработки.

Болотные руды распространены гораздо шире. Они образовались в субатлантическом периоде, когда в процессе заболачивания железная руда оседала на дно водоемов. Все средневековье черная металлургия использовала болотные руды. Ими даже платили повинности. Получение железа из руды в относительно большом количестве стало возможным после изобретения сыродутного горна. Это название появилось после изобретения дутья подогретым воздухом в доменных печах. В древности же металлурги подавали в горн сырой (холодный) воздух. При температуре 900 o с помощью углекислого газа, отнимающего у окиси железа кислород, происходит восстановление железа из руды и получается тесто или бесформенный, пропитанный шлаком пористый кусок – крица. Для осуществления этого процесса был необходим древесный уголь как источник углекислого газа. Крица после этого проковывалась, для того чтобы удалить из нее шлак. Сыродутный способ, иногда называемый варкой железа, неэкономичен, но он долгое время оставался единственным и неизменным способом получения черного металла.

Сначала железо выплавляли в обычных, закрытых сверху ямах, позднее стали строить глиняные печи-горны. В рабочее пространство горна слоями загружали измельченную руду и уголь, все это поджигалось, и через отверстия-сопла специальными (кожаными) мехами нагнетался воздух. Каменная порода оседает в шлак при температуре 1300-1400 o , при которой получается сталь – железо, содержащее от 0.3 до 1.2%. углерода. При остывании оно становится очень твердым. Чтобы получить чугун – плавкое железо с содержанием углерода 1.5-5%, – нужна более сложная конструкция горна с большим рабочим пространством. При этом температура плавления железа оказывалась ниже, и оно частично вытекало из горна вместе со шлаком. При остывании оно становилось хрупким, и его поначалу выбрасывали, но потом научились использовать. Чтобы получить из чугуна ковкое железо, нужно удалить из него углерод.

Технология создания железных сплавов

Первым устройством для получения железа из руды была одноразовая сыродутная печь. При огромном количестве недостатков, долгое время это был единственный способ получить металл из руды.

Древние люди долгое время жили богато и счастливо - каменные топоры делали из яшмы, а для получения меди пережигали малахит, но все хорошее имеет тенденцию кончаться. Одной из причин краха античной цивилизации Средиземноморья стало истощение минеральных ресурсов. Золото кончилось не в казне, а в недрах, олово иссякло даже на «Оловянных островах». Хотя медь и добывается на Синае и Кипре до сих пор, но те месторождения, которые разрабатываются сейчас, римлянам доступны не были. Среди прочего, кончилась и пригодная для сыродутной обработки руда. Только свинца ещё было много.

Впрочем, варварские племена, заселившие ставшую бесхозной Европу, долгое время не знали, что недра её истощены предшественниками. Учитывая громадное падение объёма производства металлов, тех ресурсов, которыми римляне побрезговали, долгое время хватало. Позже, металлургия стала возрождаться в первую очередь в Германии и Чехии - то есть, там, куда римляне не добрались с кирками и тачками.

Более высокую ступень в развитии чёрной металлургии представляли собой постоянные высокие печи называемые в Европе штукофенами. Это действительно была высокая печь - с четырёхметровой трубой для усиления тяги. Мехи штукофена качались уже несколькими людьми, а иногда и водяным двигателем. Штукофен имел дверцы, через которые раз в сутки извлекалась крица.

Изобретены штукофены были в Индии в начале первого тысячелетия до новой эры. В начале нашей эры они попали в Китай, а в VII веке вместе с «арабскими» цифрами арабы заимствовали из Индии и эту технологию. В конце XIII века штукофены стали появляться в Германии и Чехии (а ещё до того были на юге Испании) и в течение следующего века распространились по всей Европе.

Производительность штукофена была несравненно выше, чем сыродутной печи - в день он давал до 250 кг железа, а температура плавления в нем оказывалась достаточна для науглероживания части железа до состояния чугуна. Однако штукофенный чугун при остановке печи застывал на её дне, смешиваясь со шлаками, а очищать металл от шлаков умели тогда только ковкой, но как раз ей-то чугун и не поддавался. Его приходилось выбрасывать.

Иногда, впрочем, штукофенному чугуну пытались найти какое-то применение. Например, древние индусы отливали из грязного чугуна гробы, а турки в начале XIX века - пушечные ядра. Трудно судить, как гробы, но ядра из него получались - так себе.

Ядра для пушек из железистых шлаков в Европе отливали еще в конце XVI в. Из литой брусчатки делались дороги. В Нижнем Тагиле до сих пор сохранились здания с фундаментами из литых шлаковых блоков.

Металлурги давно заметили связь между температурой плавления и выходом продукта - чем выше она была, тем большую часть содержащегося в руде железа удавалось восстановить. Потому рано или поздно им приходила мысль форсировать штукофен предварительным подогревом воздуха и увеличением высоты трубы. В середине XV века в Европе появились печи нового типа - блауофены, которые сразу преподнесли сталеварам неприятный сюрприз.

Более высокая температура плавления действительно значительно повысила выход железа из руды, но она же повысила и долю железа науглероживающегося до состояния чугуна. Теперь уже не 10 %, как в штукофене, а 30 % выхода составлял чугун - «свиное железо», ни к какому делу не годное. В итоге, выигрыш часто не окупал модернизации.

Блауофенный чугун, как и штукофенный, застывал на дне печи, смешиваясь со шлаками. Он выходил несколько лучшим, так как его самого было больше, следовательно, относительное содержание шлаков выходило меньше, но продолжал оставаться малопригодным для литья. Чугун получаемый из блауофенов оказывался уже достаточно прочен, но оставался ещё очень неоднородным - из него выходили только предметы простые и грубые - кувалды, наковальни. Уже прилично выходили пушечные ядра.

Кроме того, если в сыродутных печах могло быть получено только железо, которое потом науглероживалось, то в штукофенах и блауофенах внешние слои крицы оказывались состоящими из стали. В блауофенных крицах стали было даже больше, чем железа. С одной стороны, это казалось хорошо, но, вот, разделить-то сталь и железо оказывалось весьма затруднительно. Содержание углерода становилось трудно контролировать. Только долгой ковкой можно было добиться однородности его распределения.

В своё время, столкнувшись с этими затруднениями, индусы не стали двигаться дальше, а занялись тонким усовершенствованием технологии и пришли к получению булата. Но, индусов в ту пору интересовало не количество, а качество продукта. Европейцы, экспериментируя с чугуном, скоро открыли передельный процесс, поднимающий металлургию железа на качественно новый уровень.

Следующим этапом в развитии металлургии стало появление доменных печей. За счёт увеличения размера, предварительного подогрева воздуха и механического дутья, в такой печи все железо из руды превращалось в чугун, который расплавлялся и периодически выпускался наружу. Производство стало непрерывным - печь работала круглосуточно и не остывала. За день она выдавала до полутора тонн чугуна. Перегнать же чугун в железо в горнах было значительно проще, чем выколачивать его из крицы, хотя ковка все равно требовалась - но теперь уже выколачивали шлаки из железа, а не железо из шлаков.

Доменные печи впервые были применены на рубеже XV-XVI веков в Европе. На Ближнем Востоке и в Индии эта технология появилась только в XIX веке (в значительной степени, вероятно, потому, что водяной двигатель из-за характерного дефицита воды на Ближнем Востоке не употреблялся). Наличие в Европе доменных печей позволило ей обогнать в XVI веке Турцию если не по качеству металла, то по валу. Это оказало несомненное влияние на исход борьбы, особенно когда оказалось, что из чугуна можно лить пушки.

С начала XVII века европейской кузницей стала Швеция, производившая половину железа в Европе. В середине XVIII века её роль в этом отношении стала стремительно падать в связи с очередным изобретением - применением в металлургии каменного угля.

Прежде всего надо сказать, что до XVIII века включительно каменный уголь в металлургии практически не использовался - из-за высокого содержания вредных для качества продукта примесей, в первую очередь - серы. С XVII века в Англии каменный уголь, правда, начали применять в пудлинговочных печах для отжига чугуна, но это позволяло достичь лишь небольшой экономии древесного угля - большая часть топлива расходовалась на плавку, где исключить контакт угля с рудой было невозможно.

Среди многих металлургических профессий того времени, пожалуй, самой тяжелой была профессия пудлинговщика. Пудлингование было основным способом получения железа почти на протяжении всего XIX в. Это был очень тяжелый и трудоемкий процесс. Работа при нем шла так: На подину пламенной печи загружались чушки чугуна; их расплавляли. По мере выгорания из металла углерода и других примесей температура плавления металла повышалась и из жидкого расплава начинали «вымораживаться» кристаллы довольно чистого железа. На подине печи собирался комок слипшейся тестообразной массы. Рабочие-пудлинговщики приступали к операции накатывания крицы при помощи железного лома. Перемешивая ломом массу металла, они старались собрать вокруг лома комок, или крицу, железа. Такой комок весил до 50 - 80 кг и более. Крицу вытаскивали из печи и подавали сразу под молот - для проковки с целью удаления частиц шлака и уплотнения металла.

Устранять серу коксованием научились в Англии в 1735 году, после чего возможность использовать для выплавки железа большие запасы каменного угля. Но за пределами Англии эта технология распространилась только в XIX веке.

Потребление же топлива в металлургии уже тогда было огромно - домна пожирала воз угля в час. Древесный уголь превратился в стратегический ресурс. Именно изобилие дерева в самой Швеции и принадлежащей ей Финляндии позволило шведам развернуть производство таких масштабов. Англичане, имевшие меньше лесов (да и те были зарезервированы для нужд флота), вынуждены были покупать железо в Швеции до тех пор, пока не научились использовать каменный уголь.

Электрический и индукционный способы выплавки железа

Разнообразие составов сталей очень затрудняет их выплавку. Ведь в мартеновской печи и конвертере атмосфера окислительная, и такие элементы, как хром, легко окисляются и переходят в шлак, т.е. теряются. Значит, чтобы получить сталь с содержанием хрома 18%, в печь надо дать гораздо больше хрома, чем 180 кг на тонну стали. А хром – металл дорогой. Как найти выход из этого положения?

Выход был найден в начале XX в. Для выплавки металла было предложено использовать тепло электрической дуги. В печь круглого сечения загружали металлолом, заливали чугун и опускали угольные или графитовые электроды. Между ними и металлом в печи («ванне») возникала электрическая дуга с температурой около 4000°C. Металл легко и быстро расплавлялся. А в такой закрытой электропечи можно создавать любую атмосферу – окислительную, восстановительную или совершенно нейтральную. Иными словами, можно предотвратить выгорание ценных элементов. Так была создана металлургия качественных сталей.

Позднее был предложен еще один способ электроплавки – индукционный. Из физики известно, что если металлический проводник поместить в катушку, по которой проходит ток высокой частоты, то в нем индуцируется ток и проводник нагревается. Этого тепла хватает, чтобы за определенное время расплавить металл. Индукционная печь состоит из тигля, в футеровку которого вделана спираль. По спирали пропускают ток высокой частоты, и металл в тигле расплавляется. В такой печи тоже можно создать любую атмосферу.

В электрических дуговых печах процесс плавки идет обычно в несколько стадий. Сначала из металла выжигают ненужные примеси, окисляя их (окислительный период). Затем из печи убирают (скачивают) шлак, содержащий окислы этих элементов, и загружают ферросплавы – сплавы железа с элементами, которые нужно ввести в металл. Печь закрывают и продолжают плавку без доступа воздуха (восстановительный период). В результате сталь насыщается требуемыми элементами в заданном количестве. Готовый металл выпускают в ковш и разливают.

Химические реакции при получении железа

В современной промышленности железо получают из железной руды, в основном из гематита (Fe 2 O 3) и магнетита (Fe 3 O 4).

Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.

Первый этап производства - восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.

В печи углерод кокса окисляется до монооксида углерода (угарного газа) кислородом воздуха:

2C + O 2 → 2CO.

В свою очередь, угарный газ восстанавливает железо из руды:

3CO + Fe 2 O 3 → 2Fe + 3CO 2 .

Флюс добавляется для извлечения нежелательных примесей из руды, в первую очередь силикатов, таких как кварц (диоксид кремния). Типичный флюс содержит известняк (карбонат кальция) и доломит (карбонат магния). Против других примесей используют другие флюсы.

Действие флюса: карбонат кальция под действием тепла разлагается до оксида кальция (негашёная известь):

CaCO 3 → CaO + CO 2 .

Оксид кальция соединяется с диоксидом кремния, образуя шлак:

CaO + SiO 2 → CaSiO 3 .

Шлак, в отличие от диоксида кремния, плавится в печи. Более лёгкий, чем железо, шлак плавает на поверхности, и его можно сливать отдельно от металла. Шлак затем употребляется в строительстве и сельском хозяйстве. Расплав железа, полученный в доменной печи, содержит довольно много углерода (чугун). Кроме случаев, когда чугун используется непосредственно, он требует дальнейшей переработки.

Излишний углерод и другие примеси (сера, фосфор) удаляют из чугуна окислением в мартеновских печах или в конвертерах. Электрические печи используют и для выплавки легированных сталей.

Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, содержащими водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями как сера и фосфор - обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах.

Химически чистое железо получается электролизом растворов его солей.

Железная руда стала добываться человеком много веков назад. Уже тогда стали очевидными преимущества использования железа.

Найти минеральные образования, содержащие железо, довольно легко, так как этот элемент составляет около пяти процентов земной коры. В целом, железо является четвертым по распространенности элементом в природе.

В чистом виде найти его невозможно, железо содержится в определенном количестве во многих типах горных пород. Наибольшее содержание железа имеет железная руда, добыча металла из которой является наиболее экономично выгодным. От ее происхождения зависит количество содержащегося в ней железа, нормальная доля которого в составе около 15%.

Химический состав

Свойства железной руды, ее ценность и характеристики напрямую зависят от ее химического состава. Железная руда может содержать различное количество железа и других примесей. В зависимости от этого выделяют ее несколько типов:

  • очень богатые, когда содержание железа в рудах превышает 65%;
  • богатые, процент железа в которой варьируется в диапазоне от 60% до 65%;
  • средние, от 45% и выше;
  • бедные, в которых процент полезных элементов не превышает 45%.

Чем больше побочных примесей в составе железной руды, тем больше необходимо энергии на ее переработку, и тем менее эффективным является производство готовой продукции.

Состав породы может представлять собой совокупность различных минералов, пустой породы и других побочных примесей, соотношение которых зависит от ее месторождения.

Магнитные руды отличаются тем, что в их основе заложен оксид, имеющий магнитные свойства, но при сильном нагреве они теряются. Количество этого типа породы в природе ограничено, но содержание железа в нем может не уступать красному железняку. Внешне он выглядит как твердые кристаллы черно-синего цвета.

Шпатовый железняк представляет собой рудную породу, в основе которой лежит сидерит. Очень часто имеет в составе значительное количество глины. Этот тип породы относительно тяжело найти в природе, что на фоне малого количества содержимого железа делает его редко используемым. Поэтому отнести их к промышленным типам руд невозможно.

Кроме оксидов в природе содержаться другие руды на основе силикатов и карбонатов. Количество содержимого железа в породе очень важно для ее промышленного использования, но также важно наличие полезных побочных элементов, таких как никель, магний, и молибден.

Отрасли применения

Сфера применения железной руды практически полностью ограничена металлургией. Ее используют, в основном, для выплавки чугуна, который добывают с помощью мартеновских или конверторных печей. На сегодняшний день чугун используется в различных сферах жизнедеятельности человека, в том числе в большинстве видов промышленного производства.

Не в меньшей степени используются различные сплавы на основе железа – наиболее широкое применение обрела сталь благодаря своим прочностным и антикоррозийным свойствам.

Чугун, сталь и различные другие сплавы железа используются в:

  1. Машиностроении, для производства различных станков и аппаратов.
  2. Автомобилестроении, для изготовления двигателей, корпусов, рам, а также других узлов и деталей.
  3. Военной и ракетной промышленности, при производстве спецтехники, оружия и ракет.
  4. Строительстве, в качестве армирующего элемента или возведения несущих конструкций.
  5. Легкой и пищевой промышлености, в качестве тары, производственных линий, различных агрегатов и аппаратов.
  6. Добывающей промышленности, в качестве спецтехники и оборудования.

Месторождения железной руды

Мировые запасы железной руды ограничены в количестве и своем местоположении. Территории скопления запасов руд называют месторождениями. На сегодняшний день месторождения железных руд делят на:

  1. Эндогенные. Они характеризуются особым расположением в земной коре, обычно в виде титаномагнетитовых руд. Формы и расположения таких вкраплений разнообразны, могут быть в форме линз, пластов, расположенных в земной коре в виде залежей, вулканообразовных залежей, в виде различных жил и других неправильных форм.
  2. Экзогенные. К этому типу относятся залежи бурых железняков и других осадочных пород.
  3. Метаморфогенные. К которым относятся залежи кварцитов.

Месторождения таких руд можно встретить на территории всей нашей планеты. Наибольшее количество залежей сконцентрировано на территории постсоветских республик. В особенности Украины, России и Казахстана.

Большие запасы железа имеют такие страны как Бразилия, Канада, Австралия, США, Индия и ЮАР. При этом практически в каждой стране на земном шаре имеются свои разрабатываемыми месторождения, в случае дефицита которых, порода импортируется из других стран.

Обогащения железных руд

Как было указано, существует несколько типов руд. Богатые можно перерабатывать непосредственно после извлечения из земной коры, другие необходимо обогатить. Кроме процесса обогащения, переработка руды включает в себя несколько этапов, таких как сортировка, дробление, сепарация и агломерация.

На сегодняшний день существует несколько основных способов обогащения:

  1. Промывка.

Применяется для очистки руд от побочных примесей в виде глины или песка, вымывание которых проводят с помощью струй воды под высоким давлением. Такая операция позволяет увеличить количество содержимого железа в бедной руде примерно на 5%. Поэтому его используют только в комплексе с другими типами обогащения.

  1. Гравитационная очистка.

Выполняется с помощью специальных типов суспензий, плотность которых превышает плотность пустой породы, но уступает плотности железа. Под воздействием гравитационных сил побочные компоненты поднимаются на верх, а железо опускается на низ суспензии.

  1. Магнитная сепарация.

Наиболее распространенный способ обогащения, который основывается на различном уровне восприятия компонентами руды воздействия магнитных сил. Такую сепарацию могут проводить с сухой породой, мокрой, или в поочередном сочетании двух ее состояний.

Для переработки сухой и мокрой смеси используют специальные барабаны с электромагнитами.

  1. Флотация.

Для этого метода раздробленную руду в виде пыли опускают в воду с добавлением специального вещества (флотационный реагент) и воздуха. Под действием реагента железо присоединяется к воздушным пузырькам и поднимается на поверхность воды, а пустая порода опускается на дно. Компоненты, содержащие железо, собираются с поверхности в виде пены.

Процесс получения железа начинается со стадии выплавки чугуна, содержащего значительное количество углерода (который попадает в чугун из кокса или древесного угля, используемых для плавления руды). Чугун отличается очень большой твердостью, но он хрупок. Из чугуна можно полностью удалить углерод. Образующееся в результате этой операции сварочное железо представляет собой ковкий, но относительно мягкий материал. В него вновь вводят некоторое количество углерода и в результате получают сталь, которая обладает достаточной вязкостью и в то же время достаточной твердостью. 


    Подсчитать количество электроэнергии, потребной для выплавки 1 т чугуна в электропечи, если принять а) реакция восстановления железа в печи протекает по схеме  

Все металлургические процессы можно разделить на первичные и вторичные. Под первичными процессами понимают извлечение металла из различных природных или искусственных сырых материалов (доменный процесс, прямое получение железа, выплавка черно- 

При всех процессах выплавки жидкая сталь содержит небольшое количество растворенного кислорода (до 0,1%). При кристаллизации стали кислород взаимодействует с растворенным углеродом, образуя оксид углерода (П). Этот газ (а также некоторые другие растворенные в жидкой стали газы), выделяется из стали в виде пузырей. Кроме того, по границам зерен стали выделяются оксиды железа и металлов примесей. Все это приводит к ухудшению механических свойств стали. 

Марганец добывают в виде ферромарганца, содержащего 85- 88% марганца, до 7% углерода, остальное - железо. Выплавку ферромарганца из смеси марганцовых и железных руд осуществляют с помощью угля как восстановителя. Уравнение реакции восстановления МпОз 

При окислении углерода и примесей часть металлического железа окисляется до оксида FeO (угар металла). Для уменьшения потерь металла его регенерируют, то есть восстанавливают до железа. В соответствии с этим в процессе выплавки стали выделяют два последовательно протекаюш их периода - окислительный и восстановительный, что может быть представлено схемой  

Б. Восстановительный период плавки при кислородно-конверторной выплавке стали пространственно отделен от окислительного и протекает после выпуска стали из конвертера в ковше. Одновременно с восстановлением оксида железа FeO в вос- 

Технологический процесс переработки железной руды, угля, известняка и углеводородных топлив в конечный продукт может быть разбит на 3-4 основные стадии, которые осуществляются раздельно с получением определенного продукта, на следующей стадии перерабатываемого в продукт нового вида. Различные стадии процесса могут проходить в одной технологической установке. Это будет способствовать не только экономии энергии и расходов на транспортировку, но и упрощению технологического процесса. Основные технологические стадии при производстве чугуна и стали следующие подготовка сырья (коксование угля, обжиг известняка, производство железорудного агломерата и окатышей) производство чугуна (доменная выплавка, производство губчатого чугуна за счет прямого восстановления железа) стали (в мартеновских и электродуговых печах, бессемеровских и основных кислородных конвертерах) проката (непрерывное литье заготовок, прокатка сортовой стали, производство труб, поковки). 

Первыми используемыми металлами были, вероятно, золото и серебро, поскольку их можно было найти в природ в свободном состоянии. Применяли их в основном в декоративных изделия. Медь начали использовать около 8000 лет до нашей эры для изготовления орудий труда, оружия, кухонной утвари и украшений. Около 3800 лет до нашей эры была изобретена бронза - сплав меди и олова. В результате человечество перешло из каменного в бронзовый век. Затем был найден способ выплавки железа, и начался железный век. По мере того как люди накапливали свой химический опыт, расширялся и круг полезных материалов, которые человек научился получать путем переработки самых разнообразных руд. 


    Пирометаллургические методы выплавки меди нецелесообразно применять для переработки бедных руд, не поддающихся обогащению. К этой категории относятся окисленные руды как бедные, так и более богатые, а также отвалы бедных сульфидных руд и хвостов от обогащения. Для этого сырья применяются методы выщелачивания меди из руды и ее извлечение из растворов посредством осаждения железом или электролиза с нерастворимыми анодами. 

Наиболее распространенной рудой, из которой получается хром, является хромистый железняк РеСгаО. Вычислите содержание (в процентах) примесей в руде, если известно, что из 1 т ее при выплавке получилось 240 кг феррохрома (сплав железа с хромом), содержащего 65% хрома. 

Каково относительное содержание по весу жел за в этой руде (в процентах) Сколько углерода понадобится для выплавки железа из 

При комплексном использовании полиметаллических сульфидных руд получаются разнообразные цветные металлы, серная кислота и оксид железа для выплавки чугуна. Примерами комплексного использования природных материалов, представляющих собой смеси органических веществ, могут служить коксование угля с сопровождающими его химическими производствами, переработка нефти, сланца, торфа и древесины. Из каждого вида топлива получают сотни продуктов. Раньше при коксовании угля единственным продуктом этого процесса был кокс, газ сжигался в печах, а смола выбрасывалась. В настоящее время из коксового газа выделяют бензольные углеводороды, аммиак, сероводород и другие цен- 

Выплавка стекла. Стекло может быть прозрачным или полупрозрачным, бесцветным или окрашенным. Оно является продуктом высокотемпературного переплава смеси кремния (кварц или песок), соды и известняка. Для получения специфических или необычных оптических и других физических свойств в качестве присадки к расплаву или заменителя части соды и известняка в шихте применяют другие материалы (алюминий, поташ, борнокислый натрий, силикат свинца или карбонат бария). Цветные расплавы образуются в результате добавок окислов железа или хрома (желтые или зеленые цвета), сульфида кадмия (оранжевые), окислов кобальта (голубые), марганца (пурпурные) и никеля (фиолетовые). Температуры, до которых должны быть нагреты эти ингредиенты, превышают 1500 °С. Стекло не имеет определенной точки плавления и размягчается до жидкого состояния при температуре 1350-1600 °С. Энергопотребление даже в хорошо сконструированных печах составляет около 4187 кДж/кг производимого стекла. Необходимая температура пламени (1800- 1950 °С) достигается за счет сжигания газа в смеси с воздухом, подогреваемым до 1000 °С в регенеративном теплообменнике, который сооружается из огнеупорного кирпича и нагревается отходящими продуктами сгорания. Газ вдувается в поток горячего воздуха через боковые стенки верхней головки регенератора, которая является основной камерой сгорания, а продукты сгорания, отдав тепло стекломассе, покидают печь и уходят в расположенный напротив регенератор. Когда температура подогрева воздуха, подаваемого на горение, снизится значительно, потоки воздуха и продуктов сгорания реверсируются и газ начнет подаваться в поток воздуха, подогреваемого в расположенном напротив регенераторе. 

Коронирующие электроды в вертикальных электрофильтрах представляют собой тонкую круглую проволоку, проволоку с маленькими шипами либо проволоку, поперечное сечение которой имеет форму квадрата или звезды. Ввиду того, что длина коронирующих электродов часто более 6 м, круглая проволока, будучи достаточно тонкой для того, чтобы обеспечить устойчивую корону, может оказаться недостаточно прочной, особенно по мере того, как она будет подвергаться вибрациям в процессе стряхиваний. В связи с этим применяют проволоку большего калибра с сечением в форме квадрата или звезды, с острыми гранями, которые обеспечивают образование устойчивой короны. В некоторых электрофильтрах предпочтение отдают электродам в виде колючей проволоки, причем совсем недавно они стали использоваться для осаждения тумана оксида железа при кислородной выплавке стали . 

Принцип использования производственных отходов (комплексное использование сырья, безотходная технология). Превращение отходов в побочные продукты производства позволяет полнее использовать сырье, что в свою очередь снижает стоимость продукции и предотвращает загрязнение окружающей среды. Например, из полиметаллических сульфидных руд при комплексной переработке получают цветные металлы, серу, серную кислоту и оксид железа (III) для выплавки чугуна. Комплексное использование сырья служит основой комбинирования предприятий. При этом возникают новые производства, перерабатывающие отходы основного предприятия, что дает высокий экономический эффект и является важнейшим элементом химизации народного хозяйства. 

Металлы можно извлекать из их руд непосредственно электролитическим или химическим восстановлением. Электролитическое восстановление, которое уже обсуждалось в разд. 19.6, используется в промышленных масштабах для получения наиболее активных металлов натрия, магния и алюминия. Менее активные металлы - медь, железо и цинк-получают в промышленных масштабах с помощью химического восстановления, причем большую часть менее активных металлов получают методом высокотемпературного восстановления в расплавленном состоянии. Поэтому такие процессы называются выплавкой. 

Диоксид углерода образуется при восстановлении оксида железа [уравнение (22.20)], а также при разложении известняка. Но известняк играет в выплавке железа не только роль поставщика диоксида углерода. Обычно в восстанавливаемой руде содержится 

При выплавке железа шлак плавает на поверхности расплавленного металла, защищая его от окисления поступающим воздухом. Из печи периодически удаляют образующиеся железо и шлак. Железо, получаемое в доменной печи, называется чугуном и содержит до 5% углерода и до 2% других примесей-кремния, фосфора и серы. 

При выплавке чугуна в домне происходят разнообразные химические процессы, в частности восстановление оксида железа (III) оксидом углерода (II), которое может быть выражено уравнением Ре20з + ЗС0 = Ре-(-ЗС02. 

Химические реакции при выплавке чугуна и стали происходят преимущественно в растворах. Жидкие чугун и сталь представляют собой растворы различных элементов в железе. В доменных и сталеплавильных печах они взаимодействуют с жидким шлаком - раствором окислов. 

Селен и теллур встречаются в таких редких минералах, как СпзЗе, РЬ5е, А 25е, Си2Те, РЬТе, А 2Те и Аи Те, а также в виде примесей в сульфидных рудах меди, железа, никеля и свинца. С промышленной точки зрения важными источниками добычи этих элементов являются медные руды. В процессе их обжига при выплавке металлической меди большая часть селена и теллура остается в меди. При электролитической очистке меди, описанной в разд. 19.6, такие примеси, как селен и теллур, наряду с драгоценными металлами золотом и серебром скапливаются в так называемом анодном иле. При обработке анодного ила концентрированной серной кислотой приблизительно при 400°С происходит окисление селена в диоксид селена, который сублимируется из реакционной смеси  

В ряде случаев (например, при выплавке трансформаторной стали) необходимо достичь очень низкой концентрации углерода 0,002-0,003%. Из приведенного уравнения видно, что для этого следует понижать рсо- Применение вакуумных печей в современной металлургии позволяет выплавлять железо и сталь с минимальным содержанием углерода. 

При выплавке железа из магнитного железняка одна нз протекающих в доменной печи реакций выражается уравнением Рез04 + СО = ЗРеО + Oj Пользуясь данными табл. 5 приложения, определить тепловой эффект реакции. В каком направлении сместится равновесие этой реакции ири повышении температуры  

Магнитный железняк Оксидная железная руда содержание железа 50-70%, состоит в основном из оксида железа(11, ill) РбзО, Сырье для производства чугуна, добавка при производстве стали (выплавка) 

У-88. Из 1 т хромистого железняка Ре(Сг02)а образовалось при выплавке 240 кг сплава железа с хромом - феррохрома, содержащего 65% хрома. Вычислить процентное содержание примесей в руде. 

При выплавке высокохромистых сталей типа Х18Н10Т на рабочей поверхности огнеупорной футеровки образуется своесбразный гарнисаж с повышенным содержанием AlA TiO., (до 33%), оксидов железа (до 57%) и оксидов хрома (до 33%), что ведет к увеличению срока службы футеровки. 

В результате в печи образуются два жидких слоя - сверху более легкий шлак, а внизу - расплав, состоящий из FeS и U2S (штейн). Шлак сливают, а жидкий штейн переливают в конвертор, в- который добавляют флюс и вдувают воздух. Конвертор для выплавки меди аналогичен используемому для получения стали, только воздух в него подается сбоку (при подаче воздуха снизу медь сильно охлаждается и затвердевает). В конверторе образуется расплавленная медь, сульфид железа превращается в оксид, который переходит в шлак  

Конечное содержание серы в прокаленном коксе из гудрона арланской нефти такое же, как в коксе из крекинг-остатка ромашкинской нефти, т. е. менее 1%. Остальные показатели в основном одинаковы, за исключением содержания ванадия (для арланского кокса в 1,5 раза выше), железа и других металлов. Повышенное содержание ванадия в обессеренном коксе объясняется высоким его содержанием в арланской нефти. Из-за этого такой кокс нельзя применять в алюминиевой промышленности. При выплавке алюминия ванадий, как и другие металлы, из кокса по- 

В работе описано влияние марганца на сульфидное растрескивание сталей. Марганец в количестве от 1 до 167о вводили прн выплавке в армо-железо, содержащее 0,04% С, в сталь 20, и в сталь У8. Результаты исследований приведены в табл. 1.2, из которой видно, что легирование сталей марганцем увеличивает их склонность к растрескиванию в сероводородсодержащей среде, причем отрицательное влияние марганца зависит от содержания углерода в стали. Так, отрицательное влияние марганца для армо-железа, стали 20 и стали У8 начинает проявляться при его содержании 3 2 н 1 % соответственно. Отрицательное влияние марганца на растрескивание сталей авторы связывают с появлением бей- 

В металлургии большое значение имеет сплав железа с кремнием - ферросилиций. Он применяется для раскисления многих марок стали и для получения кремнеуглеродистых ферросплавов. Ферросилиций с содержанием 9-17% 51 выплавляется в доменных печах из кварца, железной стружки и кокса. Ферросилиций с высоким содержанием кремния - перспективный материал для изготовления деталей химической аппаратуры благодаря исключительной кислотостойкости. Он широко применяется в качестве восстановителя при выплавке силикомарганца, ферровольфрама, ферромолибдена. Добавка кремния к стали в виде ферросилиция при ее выплавке придает ей упругость, повышает устойчивость против коррозии. 

Некоторые особенности типичного процесса выплавки можно проиллюстрировать на примере восстановления железа. Непрерывную выплавку железа производят в особом реакторе, называемом доменной печью ее схематическое изображение приведено на рис. 22.16. Сверху в доменную печь загружают смесь кокса, известняка и измельченной руды, обычно содержащей FejOs. (Кокс представляет собой твердый остаток, получаемый при коксовании природных топлив, главным образом каменного угля, с целью удаления из них летучих компонентов.) Снизу в печь нагнетают нагретый воздух, иногда обогащенный кислородом. Для получения 1 т железа необходимо примерно 2 т руды, 1 т кокса и 0,3 т известняка. Одна доменная печь позволяет получать до 2000 т железа в сутки. Нагнетаемый в печь воздух реагирует с углеродом, образуя СО. При этом выделяется такое количество тепла, что в нижней части печи развивается температура порядка 1500°С. Восстановление металлического железа можно описать реакциями 

Сколько тонн магнитного железняка, состаящего на 90% из FegOi, могут дать при выплавке 2 т чугуна с 93%-ным содержанием железа, если выход продукта составляет 92%  

Введение кремния в стали и чугун сопровождается образованием силицидов железа (ферросилиций FeSi). Чугун с содержанием 15-17% кремния кислотоупорен. Ферросилиций добавляют в сталь при ее выплавке, чтобы удалить содержащийся кислород  

ШТЕЙН - промежуточный продукт при выплавке некоторых цветных металлов (Си, N1, Рв и др.) из их сз льфидных руд. Ш. - сплав сульфида железа с сульфидами получаемых металлов (напр., Си, 8). 

Явление понижения температуры плавления растворов имеет важное значение как в природе, так и в технике. Например, выплавка чугуна из железной руды существенно облегчается тем, что температура плавления железа понижается примерно на 400° С благодаря тому, что в нем растворяется углерод и другие элемен-Растдоритель ты. То же относится и к тугоплавким окислам, составляющим пустую породу, которые вместе с флюсами (СаО) образуют раствор (шлак), плавящийся при относительно низкой температуре. Это позволяет осуществлять непрерывно периодический процесс в доменных печах, выпуская из них жидкие чугун и шлак.  ]

Известное человечеству носило космическое происхождение, а, точнее говоря, метеоритное. Как инструментальный материал оно стало использоваться примерно 4 тыс. лет до нашей эры. Технология выплавки металла несколько раз появилась на свет и терялась в результате войн и смут, но, как считают историки, первыми освоили выплавку хетты.

Стоит отметить, что речь идет о сплавах железа с небольшим количеством примесей. Химически чистый металл стало возможным получить лишь с появлением современных технологий. Данная статья расскажет вам в подробностях об особенностях производства металла методом прямого восстановления, кричном, губчатого, сыродутного, горячебрикетированного железа, коснемся изготовления хлорного и чистого вещества.

Для начала стоит рассмотреть способ производство железа из железной руды. Железо – элемент весьма распространенный. По содержанию в земной коре металл занимает 4 место среди всех элементов и 2 среди металлов. В литосфере железо представлено обычно в виде силикатов. Наибольшее его содержание отмечено в основных и ультраосновных породах.

Практически все горные руды содержат какую-то толику железа. Однако разрабатываются лишь те породы, в которых доля элемента имеет промышленное значение. Но и в этом случае количество пригодных для разработки минералов более чем велико.

  • Прежде всего, это железняк – красный (гематит), магнитный (магнитит) и бурый (лимонит). Это сложные оксиды железа с содержанием элемента в 70–74%. Бурый железняк чаще встречается в корах выветривания, где формирует так называемые «железные шляпы» толщиной до нескольких сот метров. Остальные имеют в основном осадочное происхождение.
  • Очень распространен сульфид железа – пирит или серный колчедан, однако железной рудой он не считается и идет на производство серной кислоты.
  • Сидерит – карбонат железа, включает до 35%, это руда средняя по содержанию элемента.
  • Марказит – включает до 46,6%.
  • Миспикель – соединение с мышьяком и серой, содержит до 34,3% железа.
  • Леллингит – включает всего 27,2% элемента и считается рудой бедной.

Минеральные породы классифицируют по доле железа таким образом:

  • богатые – с содержанием металла более, чем 57%, с долей кремнезема менее 8–10%, и примесью серы и фосфора менее 0,15%. Такие руды не обогащаются, сразу отправляются на производство;
  • руда со средним содержанием включает не менее 35% вещества и нуждается в обогащении;
  • бедные железные руды должны содержать не менее 26%, и тоже обогащаются перед отправкой в цех.

Общий технологический цикл производства железа в виде чугуна, стали и проката рассмотрен в этом видео:

Разработка месторождений

Существует несколько методов добычи руды. Применяют тот, который находят наиболее экономически целесообразным.

  • Открытый способ разработки – или карьерный. Рассчитан на неглубокое залегание минеральной породы. Для добычи выкапывают карьер глубиной до 500 м и шириной, зависящей от мощности месторождения. Железную руду извлекают из карьера и транспортируют машинами, рассчитанными на перевозку тяжелых грузов. Как правило, так добывают именно богатую руду, так что необходимости в ее обогащении не возникает.
  • Шахтный – при залегании породы на глубине 600–900 м, бурят шахты. Такая разработка куда более опасна, поскольку связана со взрывными подземными работами: обнаруженные пласты взрывают, а затем собранную руду транспортируют наверх. При всей своей опасности этот метод считается более эффективным.
  • Гидродобыча – в этом случае бурят скважины на определенную глубину. В шахту спускают трубы и подают воду под очень большим давлением. Водная струя дробит породу, а затем железную руду поднимают на поверхность. Скважинная гидродобыча мало распространена, так как требует больших затрат.

Технологии производства железа

Все металлы и сплавы разделяют на цветные (вроде , и т.п.) и черные. К последним относятся чугун и сталь. 95% всех металлургических процессов приходится на черную металлургию, .

Несмотря на невероятное разнообразие получаемых сталей технологий изготовления не так уж много. Кроме того, чугун и сталь – это не совсем 2 разных продукта, чугун – обязательная предварительная стадия получения стали.

Классификация продукции

И чугун, и сталь относят к сплавам железа, где легирующим компонентом выступает углерод. Доля его невелика, но он придает металлу очень высокую твердость и некоторую хрупкость. Чугун, поскольку содержит больше углерода, более хрупкий, чем сталь. Менее пластичен, но отличается лучшей теплоемкостью и стойкостью к внутреннему давлению.

Чугун получают при доменной плавке. Различают 3 вида:

  • серый или литейный – получают методом медленного остывания. Сплав содержит от 1,7 до 4,2% углерода. Серый чугун хорошо обрабатывается механическими инструментами, прекрасно заполняет формы, поэтому его используют для производства литьевых изделий;
  • белый – или передельный, получают при быстром остывании. Доля углерода – до 4,5%. Может включать дополнительные примеси , графита, марганца. Белый чугун отличается твердостью и хрупкостью и в основном применяется для выплавки стали;
  • ковкий – включает от 2 до 2,2% углерода. Производится из белого чугуна путем длительного прогревания отливок и медленного длительного охлаждения.

Сталь может включать не более 2% углерода, получают ее 3 основными способами. Но в любом случае суть сталеварения сводится к отжигу нежелательных примесей кремния, марганца, серы и так далее. Кроме того, если получают легированную сталь, то в процессе изготовления вводят дополнительные ингредиенты.

По назначению сталь разделяют на 4 группы:

  • строительная – применяют в виде проката без термической обработки. Это материал для сооружения мостов, каркасов, изготовления вагонов и так далее;
  • машиностроительная – конструкционная, относится к категории углеродистой стали, включает не более 0,75% углерода и не более 1,1% марганца. Используется для производства разнообразных машинных деталей;
  • инструментальная – также углеродистая, но с низким содержанием марганца – не более 0,4%. Из нее производят разнообразный инструмент, в частности, металлорежущий;
  • сталь специального назначения – к этой группе относят все сплавы с особыми свойствами: жаропрочная сталь, нержавеющая, кислотоупорная и так далее.

Предварительный этап

Даже богатую руду перед выплавкой чугуна необходимо подготовить – освободить от пустой породы.

  • Агломерационный метод – руда дробится, размалывается и засыпается вместе с коксом на ленту агломерационной машины. Лента проходит через горелки, где под действием температуры загорается кокс. При этом руда спекается, а сера и другие примеси выгорают. Полученный агломерат подается в бункерные чаши, где охлаждается водой и продувается потоком воздуха.
  • Метод магнитной сепарации – руду дробят и подают на магнитный сепаратор, поскольку железо обладает способностью намагничиваться, минералы при промывании водой остаются в сепараторе, а пустая порода вымывается. Затем из полученного концентрата делает окатыши и горячебрикетированное железо. Последние допускается использовать для приготовления стали, минуя стадию получения чугуна.

Данное видео расскажет во всех подробностях о производстве железа:

Выплавка чугуна

Чугун выплавляют из руды в доменной печи:

  • приготавливают шихту – агломерат, окатыши, кокс, известняк, доломит и прочее. Состав зависит от вида чугуна;
  • шихту скиповым подъемником загружают в доменную печь. Температура в печи – 1600 С, снизу подается горячий воздух;
  • при такой температуре железо начинает плавиться, а кокс гореть. При этом происходит восстановление железа: сначала при сгорании угля получают угарный газ. Угарный газ реагирует с оксидом железа с получением чистого металла и углекислого газа;
  • флюс – известняк, доломит, добавляется в шихту для перевода нежелательных примесей в форму, которую легче устранить. Например, оксиды кремния не плавятся при такой низкой температуре и отделить их от железа невозможно. Но при взаимодействии с оксидом кальция, получаемым разложением известняка, кварц превращается в силикат кальция. Последний плавится при такой температуре. Он легче, чем чугун и остается плавать на поверхности. Отделить его достаточно просто – шлак периодически выпускают через летки;
  • жидкий чугун и шлак по разным каналам стекают в ковши.

Полученный чугун в ковшах транспортируют в сталеплавильный цех или к разливочной машине, где получают чугунные слитки.

Выплавка стали

Превращение чугуна в сталь производится 3 способами. В процессе выплавки выжигается лишний углерод, нежелательные примеси, а также добавляются необходимые компоненты – при варке специальных сталей, например.

  • Мартеновский – самый популярный метод получения, поскольку обеспечивает высокое качество стали. Расплавленный или твердый чугун с добавкой руды или скрапа подают в мартеновскую печь и плавят. Температура – около 2000 С, поддерживается за счет горения газообразного топлива. Суть процесса сводится к выжиганию углерода и других примесей из железа. Необходимые добавки, если речь идет о легированной стали, добавляют в конце выплавки. Готовый продукт разливают в ковши или на слитки в изложницы.
  • Кислородно-конвертный метод – или бессемеровский. Отличается более высокой производительностью. Технология включает продувку сквозь толщу чугуна сжатого воздуха под давлением в 26 кг/кв. см. При этом углерод сгорает, и чугун становится сталью. Реакция экзотермическая, так что температура при этом повышается до 1600 С. Чтобы повысить качество продукции, сквозь чугун продувают смесь воздуха с кислородом или даже чистый кислород.
  • Электроплавильный метод считается самым эффективным. Чаще всего его используют для получения многократно легированных сталей, так как технология выплавки в этом случае исключает попадание ненужных примесей из воздуха или газа. Температура в печидля производства железа достигается максимальная – около 2200 С за счет электродуги.

Прямое получение

С 1970 года стал использоваться и способ прямого восстановления железа. Метод позволяет миновать затратную стадию получения чугуна в присутствии кокса. Первые установки такого рода не отличались производительностью, но на сегодня способ стал довольно известен: оказалось, что в качестве восстановителя можно применять природный газ.

Сырьем для восстановления служат окатыши. Их загружают в шахтную печь, прогревают и продувают продуктом конверсии газа – угарный газ, аммиак, но в основном водород. Реакция происходит при температуре в 1000 С, при этом водород восстанавливает железо из оксида.

О производителях традиционного (не хлорного и т.п.) железа в мире поговорим ниже.

Известные производители

Самая большая доля месторождений железной руды приходится на Россию и Бразилию – 18%, Австралию – 14%, а также Украину – 11%. Крупнейшими экспортерами являются Австралия, Бразилия и Индия. Пик стоимости железа наблюдался в 2011 году, когда тонна металла оценивалась в 180 $. К 2016 цена упала до 35 $ за тонну.

К наиболее крупным производителям железа относят следующие компании:

  • Vale S. A. – бразильская горнодобывающая компания, крупнейший производитель железа и ;
  • BHP Billiton – австралийская компания. Основное ее направление – добыча нефти и газа. Но при этом она же является крупнейшим поставщиком меди и железа;
  • Rio Tinto Group – австралийско-британский концерн. Rio Tinto Group добывает и производит золото, железо, алмазы и уран;
  • Fortescue Metals Group – еще одна австралийская компания, специализирующаяся по добыче руды и производству железа;
  • В России крупнейшим производителем выступает Евразхолдинг – металлургическая и горнодобывающая компания. Также известны на мировом рынке Металлинвест и ММК;
  • ООО «Метинивест холдинг» – украинская горно-металлургическая компания.

Распространенность железа велика, способ добычи достаточно прост, да и выплавка в конечном счете – процесс экономически выгодный. Вместе с физическими характеристиками производство и обеспечивает железу роль главного конструкционного материала.

Изготовление хлорного железа показано в этом видеоролике: